
Quasi-Newton updating for large-scale
distributed learning
Shuyuan Wu1, Danyang Huang2 and Hansheng Wang3

1School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
2Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China
3Guanghua School of Management, Peking University, Beijing, China
Address for correspondence: Danyang Huang, Center for Applied Statistics and School of Statistics, Renmin University of
China, 59 Zhongguancun Street, Beijing 100872, China. Email: dyhuang@ruc.edu.cn

Abstract
Distributed computing is critically important for modern statistical analysis. Herein, we develop a distributed
quasi-Newton (DQN) framework with excellent statistical, computation, and communication efficiency. In
the DQN method, no Hessian matrix inversion or communication is needed. This considerably reduces the
computation and communication complexity of the proposed method. Notably, related existing methods
only analyse numerical convergence and require a diverging number of iterations to converge. However,
we investigate the statistical properties of the DQN method and theoretically demonstrate that the
resulting estimator is statistically efficient over a small number of iterations under mild conditions.
Extensive numerical analyses demonstrate the finite sample performance.
Keywords: communication efficiency, computation efficiency, distributed system, quasi-Newton methods, statistical
efficiency

Received: October 25, 2022. Revised: March 20, 2023. Accepted: May 20, 2023
© The Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

1 Introduction
Modern statistical analysis often involves massive datasets (Gopal & Yang, 2013). In several
cases, such datasets are too large to be ef!ciently handled by a single computer. Instead, they
have to be divided and then processed on a distributed computer system, which consists of a large
number of computers (Zhang et al., 2013). Among all such computers, one often serves as the cen-
tral computer, while the rest serve as worker computers. In this scenario, the central computer
should be connected with all worker computers to construct a distributed computing system.
Thus, approaches for the realisation of ef!cient statistical learning on such distributed computing
systems have received considerable interest from the research community (Hector & Song, 2020,
2021; Jordan et al., 2019; Mcdonald et al., 2009; Tang et al., 2020).

Here, we consider a standard statistical learning problem with a total of N observations, where
N is assumed to be very large. For each observation i, we collect a response variable Yi ∈ R and
corresponding feature vector Xi ∈ Rp. The objective is to accurately estimate an unknown param-
eter θ0 ∈ Rp by minimising an appropriately de!ned empirical loss function (e.g. negative
log-likelihood function), denoted by L(θ) =PN

i=1 `(Xi, Yi; θ), where ̀ (Xi, Yi; θ) is the loss function
de!ned on the ith sample. Under a traditional setup with a small sample size N, this optimisation
problem can be easily solved using, for example, the standard Newton–Raphson algorithm.
Speci!cally, let bθ(0) be an appropriate initial estimator of θ0. Next, let bθ(t) be the estimator obtained
in the tth iteration. Then, the (t+1)-th step estimator can be obtained as follows:

bθ(t+1) =bθ(t) − αt
�
L̈
ˇbθ(t)� −1L̇

ˇbθ(t)� (1.1)

Journal of the Royal Statistical Society Series B:
Statistical Methodology, 2023, 85, 1326–1354
https://doi.org/10.1093/jrsssb/qkad059
Advance access publication 10 June 2023
Original Article D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/85/4/1326/7193744 by Shanghai U

niversity of Finance and Econom
ics user on 01 O

ctober 2023

mailto:dyhuang@ruc.edu.cn
https://doi.org/10.1093/jrsssb/qkad059

where L̇(θ) and L̈(θ) represent the !rst- and second-order derivatives of the loss function L(·) with
respect to θ, respectively, and αt represents the learning rate. Here, we assume that the initial es-
timator is close to θ0, and thus, we set αt = 1 (Mokhtari et al., 2018). However, for a massive data-
set that is distributed on a distributed computing system, ef!cient execution of the above Newton–
Raphson algorithm becomes a nontrivial problem.

One straightforward solution is to retain the original Newton–Raphson algorithm but with dis-
tributed computing. Speci!cally, we assume that there exist M workers indexed by 1 ≤ m ≤ M.
We denote the entire sample by SF = {1, 2, . . . , N} and the sample allocated to the mth worker
by S(m) ⊂ SF. Then, we have ∪M

m=1 S(m) = SF and S(m1) ∩ S(m2) = ; for any m1 ≠ m2. Given bθ(t),
we can then compute the !rst- and second-order derivatives of the loss function as follows:

L̇
ˇbθ(t)� = M−1

XM

m=1

L̇(m)
ˇbθ(t)� and L̈

ˇbθ(t)� = M−1
XM

m=1

L̈(m)
ˇbθ(t)�

where L̇(m)(bθ(t)) =Pi∈S(m)
˙̀(Xi, Yi;bθ(t)) and L̈(m)(bθ(t)) =Pi∈S(m)

῭(Xi, Yi;bθ(t)). ˙̀(Xi, Yi;bθ(t)) and
῭(Xi, Yi;bθ(t)) are computed on the mth worker and are transferred to the central computer for up-
dating bθ(t+1), according to (1.1). The solution is easy to implement and useful in practical applica-
tions but has several serious limitations. First, inverting the p × p-dimensional Hessian matrix
using the central computer incurs a computation cost on the order of O(p3) for each iteration.
Second, transferring the local Hessian matrices from each worker to the central computer incurs
a communication cost of order O(p2) for each worker in each iteration. Thus, this approach could
incur high computation and communication costs for high-dimensional data (Fan et al., 2019).

Consequently, various communication-ef!cient Newton-type methods have been proposed to
alleviate high communication costs. The underlying key idea is to maximally reduce the number
of iterations required to transfer the Hessian matrix. For example, various one-step estimators
have been proposed (Huang & Huo, 2019; F. Wang et al., 2020; Zhu et al., 2021). For these meth-
ods, only one round of Hessian matrix communication is needed. The resulting estimator can be
statistically as ef!cient as the global one under appropriate regularity conditions. Methods avoid-
ing Hessian matrix transmission have also been developed (Crane & Roosta, 2019; Jordan et al.,
2019; Shamir et al., 2014; S. Wang et al., 2018; Zhang & Lin, 2015). The underlying key idea is to
approximate the entire sample Hessian matrix using an appropriate local estimator, which is com-
puted on a single computer (e.g. the central computer). Consequently, the communication cost re-
sulting from Hessian transmission can be avoided. The inspiration for most statistical research on
these methods is to obtain an estimator with statistical ef!ciency comparable to that of the global
one within a small number of iterations. In this manner, the communication cost could be signi!-
cantly reduced.

Nevertheless, the computation cost for calculating the Hessian inverse matrix is still of order
O(p3). On one hand, to avoid matrix inverse calculation, distributed gradient descent algorithms
have been developed (Goyal et al., 2017; Lin & Zhou, 2018; Qu & Li, 2019; Su & Xu, 2019),
which require only !rst-order derivatives of the loss function (i.e. gradients). However, a large
number of iterations are typically required for convergence, and the choice of hyperparameters
is cumbersome. On the other hand, quasi-Newton methods in a distributed manner have been de-
veloped to address this problem (Chen et al., 2014; Eisen et al., 2017; Lee et al., 2018; Soori et al.,
2020). The key idea behind quasi-Newton methods is to approximate the Hessian inverse in each
iteration without actually inverting the matrix (Davidon, 1991; Goldfarb, 1970).

Speci!cally, for quasi-Newton methods, given an approximately inverted Hessian matrix in the
tth iteration H(t), we could obtain H(t+1) by solving a linear equation, which is referred to as a se-
cant condition (Davidon, 1991; Goldfarb, 1970):

H(t+1)�L̇(bθ(t+1)) − L̇(bθ(t))

= (bθ(t+1) −bθ(t)) (1.2)

Unfortunately, the secant condition cannot uniquely determine H(t+1). Two classical solutions
have been proposed to solve this problem. The !rst is symmetric rank one update (Davidon,
1991; SR1). The second solution is referred to as symmetric rank two update (Goldfarb, 1970;

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1327
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

SR2), which is also called Broyden–Fletcher–Goldfarb–Shanno (BFGS) update. The distributed
SR1 (Soori et al., 2020) and BFGS (Chen et al., 2014; Eisen et al., 2017) methods are correspond-
ingly designed. The communication cost of these types of methods could have orders as low as
O(p) in each iteration. However, multiple rounds of communication are still required.
Moreover, most of the existing studies discuss the numerical convergence of distributed
quasi-Newton methods; however, discussions on statistical properties are limited.

To address this, we develop a novel distributed quasi-Newton (DQN) learning method that fo-
cuses on the statistical ef!ciency. With the help of a statistical discussion, we demonstrate that the
proposed DQN algorithm requires only a small number of communication iterations to produce
an estimator that is statistically as ef!cient as the global one. As a consequence, the proposed es-
timator is both communicationally and computationally ef!cient. Speci!cally, estimators and ap-
proximated Hessian inverses are !rst locally computed on each worker computer. Then, a
communication mechanism is designed so that each worker passes the local Hessian information
to the central computer but only in the form of a p-dimensional vector. In each iteration, the com-
munication cost is of order O(p), which is the same as that reported in most existing DQN-related
studies (Chen et al., 2014; Eisen et al., 2017; Lee et al., 2018; Mokhtari et al., 2018; Soori et al.,
2020). However, the proposed DQN method requires only a !nite number of iterations with stat-
istical guarantees. To be more precise, under the mild condition, i.e. Np2K(log p)K+1/n2K+2 ! 0,
only 3K rounds of iterations are required, where K is a small !nite integer. Consequently, the over-
all costs attributed to communication and computation are statistically guaranteed. By contrast, a
diverging number of iterations is required by methods presented in the existing literature.

The remainder of this paper is organised as follows. In Section 2, we present the DQN method-
ology and theoretical properties. Numerical studies, including simulation experiments and real
data analysis, are presented in Section 3. Section 4 concludes the article with a brief discussion.
All technical details are delegated to the appendixes.

2 Methodology
2.1 Quasi-Newton algorithm
We !rst introduce some notations for model de!nition. We consider a standard
master-and-worker type distributed computation system with one central computer and M
worker computers. Let us recall that S(m) is the index set of the sample distributed to the mth
worker. For convenience, we assume that |S(m)| = n for every 1 ≤ m ≤ M. Then, we have
N = nM. Moreover, we recall that the global loss function is given by
L(θ) = N−1PN

i=1 `(Xi, Yi; θ). We de!ne bθge = argminθL(θ) and θ0 = argminθE{`(Xi, Yi; θ)} as
the global estimator and true parameter, respectively. Under appropriate regularity conditions
(Shao, 2003), we have

ÅÅÅ
N

p
(bθge − θ0) !d N(0, Σ) for some positive de!nite matrix Σ ∈ Rp×p as

N ! ∞. For example, L(θ) can be de!ned as twice the negative log-likelihood function.
Accordingly, bθge becomes the maximum likelihood estimator (MLE). Subsequently, we de!ne
the local loss function on the mth worker computer as L(m)(θ) = n−1P

i∈Sm
`(Xi, Yi; θ). Let bθ(m) =

argminθL(m)(θ) be the estimator locally obtained on the mth worker computer. Furthermore,
˙̀(Xi, Yi; θ) = ∂`(Xi, Yi; θ)/∂θ ∈ Rp, ῭(Xi, Yi; θ) = ∂`(Xi, Yi; θ)/∂θθ⊤ ∈ Rp×p, and `⃛ (Xi, Yi; θ) =
∂ vec{ ῭(Xi, Yi; θ)}/∂θ ∈ Rp×p2

denote the !rst-, second-, and third-order derivatives of θ, respect-
ively. Finally, for any matrix B ∈ Rp×q, kBk2 is the maximum singular value of B. If B is a sym-
metric matrix, then λmin(B) and λmax(B) represent its minimal and maximal eigenvalues,
respectively.

Before presenting the new method, we brie"y introduce quasi-Newton methods. The well-
known quasi-Newton methods were developed to address the problem of computation cost
(Davidon, 1991; Goldfarb, 1970). The key idea is to approximate the Hessian inverse without in-
verting the Hessian matrix. Let H(t) ∈ Rp×p be the approximately inverted Hessian matrix used in
the tth iteration. For the standard Newton–Raphson algorithm, we have H(t) = {L̈(bθ(t))}−1.
However, for the quasi-Newton algorithm, this is de!ned in a different but smart manner.
Speci!cally, note that L̇(bθ(t+1)) − L̇(bθ(t)) ≈ L̈(bθ(t))(bθ(t+1) −bθ(t)) based on Taylor’s expansion. This
suggests that given H(t), we could obtain H(t+1) by solving the secant condition (1.2). As mentioned

1328 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

previously, the secant condition cannot uniquely determine H(t+1). For SR1 update (Davidon,
1991), given H(t), H(t+1) is updated based on the rank one correction of H(t), i.e. H(t+1) = H(t) +
αuu⊤ for some undetermined coef!cient α ∈ R and u ∈ Rp. Accordingly, solving α and u using
(1.2), we obtain

H(t+1) = H(t) + v(t)
�
v(t)
 ⊤

�
v(t)
 ⊤�L̇(bθ(t+1)) − L̇(bθ(t))

 (2.1)

where v(t) =bθ(t+1) −bθ(t) − H(t)
�
L̇(bθ(t+1)) − L̇(bθ(t))

. For SR2 update (Goldfarb, 1970), given H(t),

H(t+1) is updated according to

H(t+1) =
ˇ
V(t)�⊤H(t)V(t) + ρ(t)

⇣
bθ(t+1) −bθ(t)

⌘⇣
bθ(t+1) −bθ(t)

⌘⊤
(2.2)

where ρ(t) = 1/[(bθ(t+1) −bθ(t))⊤�L̇(bθ(t+1)) − L̇(bθ(t))

], V(t) = Ip − ρ(t)

�
L̇(bθ(t+1)) − L̇(bθ(t))

(bθ(t+1) −bθ(t))⊤,

and Ip ∈ Rp is an identity matrix. Equation (2.2) is the well-known BFGS formula (Goldfarb,
1970). For convex loss functions, (2.2) guarantees the positive de!niteness of H(t+1) if H(t) is posi-
tive de!nite (Nocedal & Wright, 1999). Derivation details for obtaining (2.1) and (2.2) are de-
scribed in Appendix D.

Comparing (2.1) and (2.2) with {L̈(bθ(t))}−1, we !nd that no Hessian matrix inversion is needed
for computing H(t+1) using the SR1 or BFGS algorithm if the previous update H(t) is available.
Thus, both algorithms offer highly ef!cient computation. After computing H(t), bθ(t) can be updated
as bθ(t+1) =bθ(t) − H(t)L̇(bθ(t)). As proved in Broyden et al. (1973), the resulting estimator converges
Q-superlinearly to the global estimator bθge; i.e. kbθ(t+1) −bθgek/kbθ(t) −bθgek ! 0 as t ! ∞ for a
strongly convex loss function. This convergence rate is slightly lower than the quadratic rate of
the classical Newton–Raphson algorithm. However, it is much faster than the linear rate of vari-
ous gradient-based methods. This makes the quasi-Newton algorithm one of the most popular al-
gorithms in practice (Nocedal & Wright, 1999).

2.2 Distributed one-stage quasi-Newton estimator
To avoid multiple rounds of iterations, we consider the distributed one-stage quasi-Newton esti-
mator. We were motivated to do so for two reasons. First, as mentioned previously, the
quasi-Newton method is computationally ef!cient, because no Hessian matrix inversion is in-
volved. This makes it particularly attractive for high-dimensional data analysis. Second, with an
interesting modi!cation, we !nd that the quasi-Newton algorithm can operate with a
master-and-worker-type distributed computing system in a very natural and comfortable manner.
The resulting communication cost is also minimal, that is, of order O(p). Speci!cally, we present a
communication and computation ef!cient distributed one-stage quasi-Newton algorithm, which
can be executed using the following three steps.

Step 1. At the start, we assume that an initial estimator can be provided for the central computer.
The initial estimator should be convenient to obtain. Moreover, it needs to be consistent, but ex-
cellent statistical ef!ciency is not necessary. Here, we consider the popularly used one-shot estima-
tor (Zhang et al., 2013) as the initial estimator. Accordingly, we need each client to report a local
estimator bθ(m) determined by the quasi-Newton algorithm to the central computer. Next, a global
estimator can be simply assembled as bθstage,0 = M−1PM

m=1
bθ(m). Once the initial estimator bθstage,0 is

obtained, it is then broadcasted to every worker computer; see the left panel of Figure 1. This com-
pletes the !rst round of communication with O(p) cost.

Step 2. After receiving bθstage,0 from the central computer, each worker computer can compute
the local gradients L̇(m)(bθstage,0). These are then transferred back to the central computer to deter-
mine the global gradient L̇(bθstage,0) = M−1PM

m=1 L̇(m)(bθstage,0). Thereafter, the global gradient
L̇(bθstage,0) should be broadcasted back to each worker computer. The middle panel of Figure 1

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1329
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

presents an illustration of this second step. This completes the second round of communication
with O(p) cost.

Step 3. When deriving bθ(m) in Step 1, the approximated Hessian inverse H(m,0) is also obtained as
a byproduct of the quasi-Newton algorithm. We apply H(m,0) to the global gradient vector
L̇(bθstage,0) to obtain a p-dimensional vector H(m,0)L̇(bθstage,0), which is then reported back to the cen-
tral computer. This completes the third round of communication with O(p) cost. Recall that the
central computer also holds the initial estimator bθstage,0. Then, a new estimator can be obtained as
follows:

bθstage,1 =bθstage,0 − M−1
XM

m=1

H(m,0)L̇(bθstage,0)

The right panel of Figure 1 presents an illustration of the last step. For convenience, we refer to
bθstage,1 as the one-stage DQN estimator (DQN(1)).

To summarise, three rounds of master-and-worker communication are needed to compute
bθstage,1. Because the communication cost for each round is of order O(p), the total communication
cost is also of the same order, which is the lowest communication complexity possible for a
p-dimensional distributed parameter estimation problem. A more detailed description of the algo-
rithm is given in Algorithm 1. Note that bθstage,1 shares a similar spirit as the classical one-step es-
timator for MLE (Van der Vaart, 2000). However, bθstage,1 is mainly designed for a distributed
system with minimal communication and computation costs.

2.3 Theoretical properties
We next study the theoretical properties of the proposed DQN(1) estimator. To this end, several
regularity conditions must be considered.

(C1) (Randomness) Assume that (Xi, Yi)s on the mth worker are independently and identically
distributed.

(C2) (Parameters) The parameter space Θ is a compact and convex subset of Rp. In addition,
θ0 ∈ int(Θ) and R := supθ∈Θ kθ − θ0k > 0.

(C3) (Local strong convexity) De!ne Ω(θ) = E[˙̀(Xi, Yi; θ){ ˙̀(Xi, Yi; θ)}⊤] = ˇE{ ῭(Xi, Yi; θ)}.
Assume τmin ≤ λmin{Ω(θ0)} ≤ λmax{Ω(θ0)} ≤ τmax for some positive constants τmin and τmax.

(C4) (Smoothness) De!ne B(θ0, δ) = {θ ∈ Rp|kθ − θ0k ≤ δ} to be a ball around θ0 with radius
δ > 0. Assume that there exist two constants CG > 0 and CH > 0 such that the following
inequalities hold.

E
⇢��� ˙̀(Xi, Yi; θ)

���
8

2

�
≤ C8

G, E
⇢��� ῭(Xi, Yi; θ) − Ω(θ)

���
8

2

�
≤ C8

H for all θ ∈ B(θ0, δ).

Figure 1. Illustration of the communication-efficient one-stage method.

1330 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Moreover, for all X ∈ Rp, Y ∈ R, ῭(Xi, Yi; θ) and ` ⃛ (Xi, Yi; θ) are both Lipschitz continu-
ous, in the sense that for any θ0, θ00 ∈ B(θ0, δ) and u ∈ Rp,

��� ῭(Xi, Yi; θ0) − ῭(Xi, Yi; θ00)
���

2
≤ C(Xi, Yi)

��θ0 − θ00
�� and

���
�
`⃛ (Xi, Yi; θ0) − `⃛ (Xi, Yi; θ00)

(u ⊗ Ip)

���
2

≤ C(Xi, Yi)
��θ0 − θ00

��kuk

and E{C8(Xi, Yi)} ≤ C8
max, E[C8(Xi, Yi) − E{C(Xi, Yi)}8] ≤ C8

max for some positive constant
Cmax.

(C5) (Convergence) For the mth worker, de!ne the tth step local approximate Hessian inverse to
be H(t)

(m,0), assume that limt!∞ kH(t)
(m,0) − {L̈(bθ(m))}−1k2 ! 0.

(C6) (Dimensionality) We assume that p
ÅÅÅÅÅÅ
log p

p
/n ! 0 as n ! ∞.

Condition (C1) requires that the data be randomly distributed across different computers to en-
sure the statistical consistency of the one-shot estimator as a convenient initial estimator. The
same condition was adopted in Zhang et al. (2013) and Fan et al. (2019). (C2)–(C4) are classical
regularity conditions in convex optimisation (Jordan et al., 2019; Zhang et al., 2013). (C5) guar-
antees the convergence of the approximation matrix H(m,0) and has previously been rigorously in-
vestigated. Speci!cally, for SR1 update, (C5) has been rigorously proved by Conn et al. (1991),
assuming that sequence {H(t)

(m,0)L̇(bθ(t))} is uniformly linearly independent. (C5) has also been veri-
!ed for BFGS update by Schuller (1974) under slightly stronger conditions. (C6) speci!es the re-
lationship between the dimension p and local data size n. Given these technical conditions, we
establish Theorem 1.

Theorem 1 Assume that (C1)–(C6) hold. Then, we have kbθstage,1 −bθgek ≤
κ(M−1 PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}

{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)kbθstage,0 − θ0k for some constant κ > 0
with probability tending to one. Furthermore, assuming that
N(p log p)2/n4 ! 0, we have kbθstage,1 −bθgek = op(N−1/2).

Algorithm 1 Distributed one-stage quasi-Newton algorithm

Input: Initial estimators bθ(0)
(m), H(0)

(m,0) on the m-th worker, tolerance δ > 0, maximum iterations T

Output: One-stage estimator bθstage,1

for m = 1, 2, … M (distributedly) do

While tol > δ and t < T do
bθ(t+1)

(m) =bθ(t)
(m) − H(t)

(m,0)L̇(m)
ˇbθ(t)

(m)

�
, where H(t)

(m,0) is updated by (2.1) or (2.2)

end

Save H(t)
(m,0) and bθ(t)

(m) at convergence as H(m,0) and bθ(m) and then transfer bθ(m) to the central computer

end

The central computer computes bθstage,0 = M−1PM
m=1

bθ(m) and broadcasts bθstage,0 to each worker

for m = 1, 2, … M (distributedly) do

Compute L̇(m)(bθstage,0) and transfer it to the central computer

end

The central computer computes L̇(bθstage,0) = M−1 PM
m=1 L̇(m)(bθstage,0) and broadcasts L̇(bθstage,0) to each worker

for m = 1, 2, … M (distributedly) do

Calculate H(m,0)L̇(bθstage,0) and transfer it to the central computer

end

The central computer computes bθstage,1 =bθstage,0 − M−1 PM
m=1 H(m,0)L̇(bθstage,0).

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1331
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

The detailed proof is given in Appendix A.1. From Theorem 1, we infer that the discrepancy
between bθstage,1 and bθge is upper bounded by (M−1PM

m=1 [kbθ(m) − θ0k2 +kL̈(m)(θ0) −Ω(θ0)k2
2 +

k{L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] +kbθstage,0 − θ0k)kbθstage,0 − θ0k= Op(p logp/n2) +op(1/
ÅÅÅ
N

p
).

Thus, the difference kbθstage,1 −bθgek is further reduced compared with kbθstage,0 − θ0k to order
Op(1/

ÅÅÅ
N

p
+

ÅÅÅÅÅÅ
logp

p
/n); see details in Equation (A.4) of Appendix A. The amount of compression

is determined by three factors: (1) averaged distance of the local estimator M−1PM
m=1 kbθ(m) − θ0k2;

(2) averaged distance of the local estimator, Hessian matrix, and third derivative matrix
M−1PM

m=1 [kL̈(m)(θ) −Ω(θ0)k2
2 +k{L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2]; and (3) distance between

the initial estimator and true parameter kbθstage,0 − θ0k. Accordingly, assuming
N(p logp)2/n4 !0, bθstage,1 achieves the optimal statistical ef!ciency. When p is !xed, this condi-
tion reduces to N/n4 !0. It is a condition much weaker than N/n2 !0, which has been typically
assumed in the existing literature (F. Wang et al., 2020; Zhang et al., 2013).

2.4 Distributed multi-stage quasi-Newton estimator
In the previous section, we introduced the DQN(1) estimator. Note that to achieve the optimal
statistical ef!ciency, we require N(log p)4/n4 ! 0. This condition can be easily satis!ed if the fea-
ture dimension p is not too high. By contrast, if p is relatively high, the convergence rate of the
DQN(1) estimator slows dow n. To !x this, we further develop a multi-stage DQN estimator.
First, we present a two-stage DQN estimator with two extra updating steps with BFGS update
and refer to it as the DQN(2) estimator. The details of the DQN(2) algorithm are given below.
It is remarkable that, after the !rst three steps, the DQN(1) estimator bθstage,1 is already computed
by the central computer.

Step 4. Broadcasting the DQN(1) estimator to each worker computer. Similar to the DQN(1)
algorithm, the worker computer should compute the local gradient L̇(m)(bθstage,1), which should
be reported back to the central computer. As a consequence, the global gradient L̇(bθstage,1) can
be assembled. This leads to two rounds of communication with a cost of order O(p).

Step 5. Note that, when we compute the DQN(1) algorithm, each worker holds an approximated
Hessian inverse matrix H(m,0). Moreover, note that bθstage,0 and L̇(bθstage,0) are the estimators obtained
in the process of the DQN(1) algorithm for each worker. Consequently, given H(m,0), each worker
could compute the updated matrix H(m,1) according to the BFGS formula (2.2) as follows:

H(m,1) =
�
V0
 ⊤H(m,0)

�
V0

+ ρ0

⇣
bθstage,1 −bθstage,0

⌘⇣
bθstage,1 −bθstage,0

⌘⊤
(2.3)

where V0 = Ip − ρ0
�
L̇(bθstage,1) − L̇(bθstage,0)

(bθstage,1 −bθstage,0)⊤ and ρ0 = 1/[(bθstage,1 −bθstage,0)⊤

�
L̇(bθstage,1) − L̇(bθstage,0)

]. After computing H(m,1), it is applied to the global gradient L̇(bθstage,1).

This leads to a p-dimensional vector H(m,1)L̇(bθstage,1), which is then reported back to the central com-
puter. Subsequently, the DQN(2) estimator could be derived as

bθstage,2 =bθstage,1 − M−1
XM

m=1

H(m,1)L̇
⇣
bθstage,1

⌘
(2.4)

Thus, Steps 4 and 5 constitute the second stage estimation. The detailed algorithm is given in
Algorithm 2. Moreover, a two-stage DQN estimator with the SR1 updating strategy could be simi-
larly obtained; more details are presented in Appendix C.1.

Similar to Algorithm 1, Algorithm 2 incurs another three rounds of communication. Recall that
three extra rounds of communication are needed for computing bθstage,1. Thus, a total of six rounds of
communication are needed for computing bθstage,2. The communication cost for each round remains
of order O(p). Consequently, the total communication cost of the two-stage estimator remains of
order O(p). Additionally, no Hessian matrix needs to be inverted. However, a better estimation ac-
curacy could be achieved due to the additional updating stage, which leads to the next theorem.

1332 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Theorem 2 Assume that the technical conditions (C1)–(C6) hold. Then, we
have kbθstage,2 −bθgek ≤ κ2(M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2+

k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)kbθstage,1 −bθgek for
some constant κ2 > 0 with probability tending to one. Furthermore, assum-
ing that Np4(log p)3/n6 ! 0, we have kbθstage,2 −bθgek = op(N−1/2).

The proof of Theorem 2 is given in Appendix A.2. It could be veri!ed that the discrepancy be-
tween bθstage,2 and bθge is further reduced from kbθstage,1 −bθgek = Op(p log p/n2) + op(1/

ÅÅÅ
N

p
) to

kbθstage,2 −bθgek = Op(p2(log p)3/2/n3) + op(1/
ÅÅÅ
N

p
); see Appendix A for more details.

Accordingly, the optimal statistical ef!ciency can be achieved if Np4(log p)3/n6 ! 0. This is a
weaker condition than that of the DQN(1) estimator. Next, we extend the idea of the DQN(2)
estimator to develop the multi-stage DQN (DQN(K)) estimator bθstage,K. The detailed algorithm
is given in Algorithm 3. The theoretical properties are summarised by Corollary 1.

Corollary 1 Assume that the technical conditions (C1)–(C6) hold. Then, we
have kbθstage,K −bθgek ≤ κK (M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2+

k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)Kkbθstage,0 − θ0k for
some cnstant κK > 0 with probability tending to one. Furthermore, assum-
ing that Np2K(log p)K+1/n2K+2 ! 0, we have kbθstage,K −bθgek = op(N−1/2).

The proof of Corollary 1 is given in Appendix A.3. It could be found that Corollary 1 is a directly
generalised version of Theorem 2. To be more speci!c, the discrepancy between the DQN(K) es-
timator bθstage,K and bθge is further compressed from kbθstage,0 −bθgek by (M−1PM

m=1 [kbθ(m) − θ0k2+
kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)K. Consequently,
the optimal statistical ef!ciency can be obtained using the DQN(K) estimator with even weaker
technical conditions. In other words, Np2K(log p)K+1/n2K+2 ! 0. Moreover, Algorithm 3 shows
that the DQN(K) estimator requires 3K rounds of communication, with cost O(p) for each round.
Therefore, practical applications should consider the trade-off between statistical ef!ciency and
time cost.

3 Numerical studies
3.1 Performance of the DQN algorithm
We start with demonstrating the !nite sample performance of the proposed DQN method.
Speci!cally, we present two simulation examples as follows.

Algorithm 2 Distributed two-stage quasi-Newton algorithm

Input: DQN(1) estimator bθstage,1 on the central computer, bθstage,0, L̇(bθstage,0), and the initial Hessian inverse
approximation H(m,0) on the m-th worker

Output: DQN(2) estimator bθstage,2

The central computer broadcasts bθstage,1 to each worker

for m = 1, 2, . . . , M (distributedly) do

Compute L̇(m)(bθstage,1) and transfer it to the central computer

end

The central computer computes L̇(bθstage,1) = M−1 PM
m=1 L̇(m)(bθstage,1) and broadcasts L̇(bθstage,1) to each worker

for m = 1, 2, . . . , M (distributedly) do

Update H(m,1) according to (2.3).

Calculate H(m,1)L̇(bθstage,1) and transfer it to the central computer

end

The central computer computes bθstage,2 =bθstage,1 − M−1 PM
m=1 H(m,1)L̇(bθstage,1).

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1333
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

• Example 1 (Logistic regression). We consider a logistic regression, which is one of the most
popular classi!cation models. We set θ0 = c0γ/kγk, where γ ∈ Rp is generated from a standard
normal distribution, and c0 = 1.5 controls the signal strength. The covariate Xi is generated
from a multivariate normal distribution with E(Xi) = 0 and cov(Xij1 , Xij2) = ρ|j1−j2| with ρ =
0.5 for 1 ≤ j1, j2 ≤ p. Given Xi, the response Yi ∈ {0, 1} is then generated according to
P(Yi = 1|Xi, θ0) = {1 + exp (− X⊤

i θ0)}−1.
• Example 2 (Poisson regression). This is an example revised from Fan and Li (2001).

Speci!cally, θ0 and Xi are the same as those in Example 1 but with c0 = 0.3 and ρ = 0.2.
Conditional on Xi, response Yi is generated from a Poisson distribution with
E(Yi|Xi) = exp (X⊤

i θ0).

For each simulation example, the sample size is N = 106, and we vary the local data size n and di-
mension p. The generated sample data are randomly distributed to different workers M = N/n.
We replicate the experiment R = 100 times for reliability.

To gauge the !nite sample performance of the proposed method, various performance analyses
are developed. Speci!cally, let bθ(r)

stage,K be the DQN(K) estimator (by SR1 or BFGS updating) ob-
tained in the rth replication. Then, the mean squared error (MSE) is de!ned as
MSE = R−1PR

r=1 kbθ
(r)
stage,K − θ0k2. Moreover, a total of four measures are developed to evaluate

the estimator’s stability and robustness. They are the MSE values in log-scale (i.e. log(MSE)),
standard deviation (SD) of log(MSE), inter-quartile range (IQR) of log(MSE), and range of
log(MSE). The detailed results are given in Tables 1 and 2. Because simulation results of
Example 1 are quantitatively similar to those of Example 2, we report the results for Example 1
only. The detailed results for Example 2 are given in Appendix E.

From Table 1, we !nd that the values of all four measures increase as p decreases for a !xed n. By
contrast, from Table 2, we !nd that, with a !xed p, larger n always leads to an improved estima-
tion performance in the sense that all four measure values approach those of MLE (i.e. bθge).
Moreover, when p is relatively small or n is relatively large, the log(MSE) value of bθstage,1 or
bθstage,2 is comparable with that of MLE. However, as p grows (or n drops), more stages (i.e. larger
K) are required to obtain an estimator with optimal statistical ef!ciency. Nevertheless, the number
of required stages K remains very small (e.g. K ≤ 4). Thus, the algorithm is communicationally and
computationally ef!cient. The SD, IQR, and range values also demonstrate similar patterns. These
results are consistent with our theoretical !ndings in Theorems 1 and 2 and Corollary 1.

Algorithm 3 Distributed Distributed K-stage quasi-Newton algorithm

Input: DQN(K−1) estimator bθstage,K−1 on the central computer, bθstage,K−2, L̇(bθstage,K−2), and Hessian inverse
approximation H(m,K−2) on the m-th worker

Output: DQN(K) estimator bθstage,K

The central computer broadcasts bθstage,K−1 to each worker

for m = 1, 2, . . . , M (distributedly)do

Compute L̇(m)(bθstage,K−1) and transfer it to the central computer

end

The central computer computes L̇(bθstage,K−1) = M−1 PM
m=1 L̇(m)(bθstage,K−1) and broadcasts L̇(bθstage,K−1) to each

worker

for m = 1, 2, . . . , M (distributedly) do

Compute H(m,K−1) =
�
VK−2

 ⊤H(m,K−2)
�
VK−2

+ ρK−2

ˇbθstage,K−1 −bθstage,K−2
�ˇbθstage,K−1 −bθstage,K−2

�⊤

Calculate H(m,K−1)L̇(bθstage,1) and transfer it to the central computer

end

The central computer obtains
bθstage,K =bθstage,K−1 − M−1 PM

m=1 H(m,K−1)L̇(bθstage,K−1).

1334 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

3.2 Comparison with competing methods
We next compare the proposed method with the following four competing methods: (1) the
distributed one-step Newton (DOSN) estimator of Huang and Huo (2019), (2) the
communication-ef!cient surrogate likelihood (CSL) based estimator of Jordan et al. (2019), (3)

Table 1. Log(MSE) values and the corresponding SD, IQR, and range values for Example 1

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

p SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS MLE

Log 1 −6.86 −6.86 −6.96 −6.96 −6.96 −6.96 −6.96 −6.96 −6.96 −6.96 −6.96

(MSE) 10 −3.91 −3.91 −4.61 −4.61 −4.62 −4.62 −4.64 −4.64 −4.65 −4.65 −4.65

20 −2.65 −2.65 −3.87 −3.87 −3.90 −3.90 −3.93 −3.93 −3.96 −3.96 −3.96

SD 1 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

20 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

IQR 1 0.19 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.20 0.20 0.19

10 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

20 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Range 1 0.68 0.68 0.69 0.69 0.69 0.69 0.70 0.70 0.70 0.70 0.70

10 0.26 0.26 0.23 0.23 0.23 0.23 0.32 0.32 0.23 0.23 0.23

20 0.18 0.18 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.20

Note. The numerical performance is evaluated for different methods with different feature dimensions p(× 102). The
whole sample size N and local sample size n are !xed to be 106 and 2 × 104, respectively. The reported results are
averaged for R = 100 simulation replications.
MSE = mean squared error; SD = standard deviation; IQR = inter-quartile range; BFGS = Broyden–Fletcher–Goldfarb–
Shanno; MLE = maximum likelihood estimator.

Table 2. Log(MSE) values and the corresponding SD, IQR, and range values for Example 1

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

n SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS MLE

Log 50 −2.97 −2.97 −5.23 −5.23 −5.12 −5.12 −5.29 −5.29 −5.32 −5.32 −5.34

(MSE) 100 −4.23 −4.23 −5.28 −5.28 −5.30 −5.30 −5.32 −5.32 −5.33 −5.33 −5.34

500 −5.25 −5.25 −5.33 −5.33 −5.33 −5.33 −5.33 −5.33 −5.33 −5.33 −5.34

SD 50 0.04 0.04 0.08 0.08 0.29 0.29 0.08 0.08 0.08 0.08 0.08

100 0.05 0.05 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

500 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

IQR 50 0.04 0.04 0.10 0.10 0.18 0.18 0.10 0.10 0.10 0.10 0.09

100 0.07 0.07 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09

500 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Range 50 0.22 0.22 0.40 0.40 1.33 1.33 0.41 0.41 0.42 0.42 0.43

100 0.31 0.31 0.40 0.40 0.40 0.40 0.41 0.41 0.42 0.42 0.43

500 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

Note. The numerical performance is evaluated for different n(× 102) and methods. The whole sample size N and feature
dimension p are !xed to N = 106 and p = 103, respectively. Finally, the reported results are averaged based on R = 100
simulations.
MSE = mean squared error; SD = standard deviation; IQR = inter-quartile range; BFGS = Broyden–Fletcher–Goldfarb–
Shanno; MLE = maximum likelihood estimator.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1335
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

the distributed momentum gradient descent (DMGD) estimator of Goyal et al. (2017), and (4) the
distributed asynchronous averaged quasi-Newton (DAQN) estimator of Soori et al. (2020). The
simulation model used here is the same as that in Section 3.1. We !x the sample size to be
N = 106, the number of workers to be M = 50, and vary the dimension p from 500 to 2,500.
Moreover, we set K = 4 for Example 1 and K = 2 for Example 2. We replicate the experiment
for a total of R = 100 times.

To gauge the !nite performance of different methods, we consider four different performance
measures. First, to measure the estimation accuracy, we focus on the log(MSE) values. Second,
to compare computation ef!ciency, we record for each method the computing time for the master
plus the averaged computing time for each worker as T(r)

1 in the rth (1 ≤ r ≤ R) simulation. Then,
the averaged computing time T1 for the R simulations is calculated and reported. Third, to meas-
ure the communication ef!ciency, the communication time for each simulation T(r)

2 is estimated by
the overall time cost T(r) minus the computing time T(r)

1 . Similarly, the averaged communication
time T2 is calculated and reported. Finally, the averaged total time cost T is also reported for better
comparison. The simulation results are reported in Table 3 and Figure 2.

Table 3. Averaged computation cost T1, communication cost T2, and total time cost T for Examples 1 and 2

p DOSN CSL DMGD DAQN DQN-BFGS DQN-SR1

Example 1

T1 500 0.95 1.86 40.29 3.94 0.59 0.68

1,000 2.71 5.54 70.49 13.44 1.11 1.36

2,000 8.69 24.75 113.59 33.92 3.63 3.72

2,500 13.14 45.37 267.96 68.14 5.57 7.27

T2 500 42.16 0.95 21.36 1.56 0.85 0.67

1,000 212.94 1.90 42.82 3.01 1.66 1.26

2,000 799.87 3.86 72.77 5.56 3.46 2.42

2,500 1,240.81 4.64 90.97 8.36 4.61 3.16

T 500 43.12 2.82 61.65 5.51 1.44 1.35

1,000 215.64 7.44 113.32 16.45 2.76 2.62

2,000 808.56 28.61 186.35 39.48 7.09 6.15

2,500 1,253.95 50.01 358.93 76.51 10.17 10.42

Example 2

T1 500 0.50 0.72 52.09 2.44 0.31 0.31

1,000 1.67 2.24 70.20 7.56 0.56 0.60

2,000 8.26 10.26 113.54 26.62 1.50 1.53

2,500 13.22 18.94 144.30 53.25 1.95 2.27

T2 500 40.47 1.07 19.09 1.00 0.36 0.31

1,000 166.58 1.68 41.57 2.20 0.69 0.56

2,000 775.31 3.09 72.49 5.35 1.42 1.18

2,500 1,308.45 3.72 91.92 6.79 1.80 1.58

T 500 40.96 1.79 71.18 3.44 0.67 0.62

1,000 168.24 3.92 111.77 9.76 1.25 1.16

2,000 783.57 13.35 186.03 31.96 2.92 2.71

2,500 1,321.68 22.66 236.23 60.04 3.75 3.85

Note. The time cost is evaluated for different methods with different feature dimensions p. The whole sample size N and
local sample size n are !xed to be 106 and 2 × 104, respectively. The reported results are averaged for R = 100 simulation
replications.
DOSN = distributed one-step Newton; CSL = communication-ef!cient surrogate likelihood; DMGD = distributed
momentum gradient descent; DAQN = distributed asynchronous averaged quasi-Newton; DQN = distributed
quasi-Newton; BFGS = Broyden–Fletcher–GoldfarbShanno

1336 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

As shown in Figure 2, all methods demonstrate similar performance in terms of estimate accuracy
with similar log(MSE) values. From Table 3, the following conclusions could be drawn. First, for the
computation cost, we !nd that (1) T1 for the DMGD method is much larger than that for the other
methods, because it requires a considerable number of iterations to converge; (2) the T1 value of CSL
increases dramatically as p increases due to Hessian inverse calculation with complexity of O(p3);
and (3) the DQN methods perform well with the lowest T1 values, which is especially true for large
p. Second, for the communication cost, we !nd that the T2 value for the DOSN method is the high-
est. This is as expected because DOSN needs to transfer a Hessian matrix for calculation. This leads
to a complexity of order O(p2). In contrast, the DQN has the lowest T2 value. Finally, in comparison
of the total time cost, the DQN methods perform the best in terms of T. To summarise, the DQN
methods demonstrate comparable estimation accuracy and the lowest total time cost.

3.3 Ultrahigh-dimensional features
We next consider the ultrahigh-dimensional feature situation with p ≫ n. In this case, appropriate
sparse structure has to be assumed to the true regression coef!cient (Fan & Lv, 2008). Therefore,
various screening methods (Fan & Lv, 2008; Fan & Song, 2010; He et al., 2013; G. Li et al., 2012;
X. Li et al., 2020) can be readily applied but in a distributed way. Once the feature dimension is
signi!cantly reduced, the DQN algorithm can be readily applied. For the purpose of illustration,
we consider here the sure independence screening method for generalised linear models (Fan &
Song, 2010) and calculate the statistic in a distributed way as follows.

We start with a simulation setup as suggested by Fan and Song (2010). More speci!cally, the
covariates are generated by Xij = (εij + aijε)(1 + a2

ij)
−1/2, where ε and {εij}

[p/3]
j=1 are independently

and identically distributed with N(0, 1), {εij}
[2p/3]
j=[p/3]+1 are independently and identically distrib-

uted following a double exponential distribution with location and scale parameters to be 0
and 1, and {εij}

p
j=[2p/3]+1 are independently and identically distributed following a mixture normal

distribution with equal weights on N(− 1, 1) and N(1, 0.5). The {aij}
q
j=1 are independently and

identically distributed with N(0, 1) for the !rst q variables and a j = 0 for j ≥ q. The true feature
set is MT = {1, . . . , s} with s = 20. De!ne θ⊤ = (θj) = 1[s/5] ⊗ (1, − 1.1, 1.2, − 1.3, 1.4)/2, where
1b ∈ Rb is a vector with all elements equal to 1, and ⊗ denotes the Kronecker product. The
response Yi is generated by a standard logistic regression. The feature dimension p and total sam-
ple size N are set at 104 and 105, respectively. The number of workers is set to M = 20, 40,
and 50.

Next, we follow Fan and Song (2010) and compute the marginal maximum likelihood estimator
for each feature j on the mth worker as bθ j,m. In most cases, this should be a biased estimate for θj,
but could be useful for variable screening. This leads to a total of M marginal estimators bθ j,m.
These are then averaged as eθj = M−1P

m
bθj,m, which is an overall marginal estimator for θj. We

5 10 15 20 25 5
.5

 4
.5

 3
.5

Logistic Regression

p(x102)

lo
g(
M
S
E
)

DQN SR1
DQN BFGS
CSL
DOSN
DMGD
DAQN
MLE

5 10 15 20 25

 7
.5

 6
.5

Poisson Regression

p(x102)

DQN SR1
DQN BFGS
CSL
DOSN
DMGD
DAQN
MLE

Figure 2. Log(MSE) values for different methods with different dimension p. The results for the logistic and Poisson
regression models are given in the left and right panels, respectively. The whole sample size N and local subsample
size n are fixed at N = 106 and n = 2 × 104. The number of workers M = 50. The reported log(MSE) values are
averages for R = 100 simulations. MSE = mean squared error.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1337
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

next obtain the estimated feature set as fM = {1 ≤ j ≤ p : |eθj| ≥ γn}, where γn is appropriately se-
lected such that |fM| = dn/ log (n)e; see Fan and Song (2010) for a more detailed discussion.
Consequently, the condition (C6) for the DQN algorithm is automatically satis!ed. Thereafter,
the proposed DQN method can be readily applied to the dimension reduced problem with only
the selected feature involved.

To measure the performance of the distributed screening procedure and the DQN algorithm, we
compute the coverage rate for the rth (1 ≤ r ≤ R) replication as CR(r) = |fM(r)TM(r)

T |/|M
(r)
T |.

Then, the overall coverage rate is given by CR = R−1P
r CR(r). The other metrics used in

Section 3.1 are also considered. The detailed results are given in Table 4. From Table 4, we !nd
that the implemented screening procedure is screening consistent in the sense that all CR values
are equal to 1. Furthermore, with a !xed N, we !nd that a larger M always leads to a smaller
n. This leads to a smaller screening feature set with size dn/ log (n)e. Consequently, fewer redun-
dant features are included. This further results in even smaller log(MSE) values. Lastly, for the
DQN algorithms, a slightly larger number of stages (i.e. larger K) are required to obtain an esti-
mator that is competitive with MLE. These results are consistent with our theoretical !ndings
in Theorems 1 and 2 and Corollary 1.

3.4 Real data analysis
In this section, we apply the proposed method to the THU Chinese news dataset for illustration.
The dataset is publicly available at http://thuctc.thunlp.org. The dataset consists of 14 types of
Chinese news collected from Sina news (https://news.sina.com.cn) from 2005 to 2011.

For the purpose of illustration, we generate response Yi as follows. We !rst select all the news of
type technology and de!ne the response Yi = 1. This leads to a total of Np = 162, 929 positive
cases. We next randomly sample a total of d1.5Npe negative cases without replacement from
the other types of news. The corresponding response Yi is de!ned to be 0. Then, the total sample
size is given by N = 407, 322. Different words are then extracted from the original documents.
Those words with top F% frequencies for each class are selected. They are then coded as binary
%covariates. We consider F% = 0.3%, 0.4%, and 0.5%, which leads to p = 998, 1,333, and
1,660, respectively. All data are then randomly shuf"ed and distributed to M = 20 worker com-
puters. The competing methods and performance measures remain the same as those in Section

Table 4. Log(MSE) values and corresponding SD, IQR, and range for ultrahigh-dimensional case

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

M CR SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS MLE

Log 2 1.00 0.34 0.34 −1.01 −0.95 −0.93 −0.86 −0.99 −1.01 −1.11 −1.08 −1.00

(MSE) 4 1.00 0.35 0.35 −1.34 −0.87 −1.29 −1.11 −1.42 −1.42 −1.47 −1.49 −1.45

5 1.00 0.40 0.40 −1.37 −0.73 −1.38 −1.13 −1.56 −1.53 −1.61 −1.64 −1.60

SD 2 1.00 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05

4 1.00 0.06 0.06 0.06 0.05 0.07 0.07 0.06 0.06 0.06 0.06 0.06

5 1.00 0.07 0.07 0.06 0.08 0.08 0.09 0.07 0.07 0.07 0.07 0.07

IQR 2 1.00 0.08 0.08 0.07 0.05 0.06 0.08 0.07 0.07 0.06 0.06 0.07

4 1.00 0.09 0.09 0.09 0.08 0.10 0.10 0.10 0.10 0.09 0.09 0.09

5 1.00 0.09 0.09 0.08 0.09 0.12 0.13 0.10 0.11 0.10 0.09 0.10

Range 2 1.00 0.25 0.25 0.24 0.19 0.24 0.25 0.22 0.22 0.24 0.24 0.25

4 1.00 0.27 0.27 0.26 0.25 0.34 0.36 0.30 0.32 0.30 0.30 0.29

5 1.00 0.30 0.30 0.30 0.37 0.38 0.46 0.34 0.37 0.34 0.33 0.32

Note. The numerical performance is evaluated for different M (×10) and methods. The whole sample size N and feature
dimension p are !xed at 105 and 104, respectively. Finally, the reported results are averaged based on R = 100
simulations.
MSE = mean squared error; SD = standard deviation; IQR = inter-quartile range; CR = coverage rate; BFGS = Broyden–
Fletcher–Goldfarb–Shanno.

1338 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

http://thuctc.thunlp.org
https://news.sina.com.cn

3.2 but with K = 5. Because we do not know the ground truth in real data analysis, the global es-
timators are then treated as if they were the true parameters. The experiment is randomly repli-
cated R = 10 times for a reliable evaluation. The results are summarised in Table 5 and Figure 3.

From Table 5, we !nd that the proposed DQN method has the lowest computation cost T1. It
outperforms other competing methods signi!cantly in terms of computation ef!ciency. The com-
putation advantage is particularly apparent when the feature dimension p is relatively large.
Moreover, we !nd that the communication cost T2 of the DQN methods is slightly higher than
the smallest T2 value for the DAQN method. However, the overall time cost of DQN (i.e. T) re-
mains the smallest. This suggests that the proposed DQN methods are computationally very com-
petitive. From Figure 3, we !nd that the proposed DQN methods also outperform their
competitors slightly in terms of estimation accuracy with the smallest log(MSE) values.

4 Concluding remarks
This article focuses on the discussion of statistical properties of DQN algorithms, which is moti-
vated by two well-known quasi-Newton algorithms, i.e. SR1 and BFGS. The proposed algorithms

Table 5. Averaged computation cost T1, communication cost T2, and total time cost T for the THU Chinese news
dataset

p DOSN CSL DMGD DAQN DQN-BFGS DQN-SR1

T1 998 1.22 3.54 104.93 13.34 0.72 0.95

1,333 2.14 5.44 126.40 20.59 1.29 1.66

1,660 2.63 8.69 151.70 28.84 1.96 2.39

T2 998 62.56 0.36 38.52 0.12 0.99 0.71

1,333 129.28 0.45 54.27 0.26 1.26 0.92

1,660 193.91 0.56 66.65 0.36 1.57 1.10

T 998 63.78 3.90 143.45 13.46 1.71 1.66

1,333 131.42 5.88 180.67 20.84 2.55 2.58

1,660 196.54 9.25 218.36 29.20 3.53 3.49

Note. The time cost is evaluated for different methods with different feature dimensions p. The whole sample size N and
number of workers M are !xed to be 407, 322 and 20, respectively. The reported results are averaged for R = 10
simulation replications.
DOSN = distributed one-step Newton; CSL = communication-ef!cient surrogate likelihood; DMGD = distributed
momentum gradient descent; DAQN = distributed asynchronous averaged quasi-Newton; DQN = distributed
quasi-Newton; BFGS = Broyden–Fletcher–GoldfarbShanno.

1000 1200 1400 1600

 2
0

2
4

p

lo
g
(M

S
E
)

DQN SR1
DQN BFGS
CSL
DOSN
DMGD
DAQN

Figure 3. Log(MSE) values for the THU Chinese news dataset. The log(MSE) values are evaluated for different
methods with different dimension p. The whole sample size N is fixed ta N = 407, 322 and number of workers M is
fixed at M = 20. Finally, the reported log(MSE) values are averaged for R = 10 simulations. MSE = mean squared
error.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1339
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

are highly ef!cient both communicationally and computationally. We theoretically show that
under mild conditions, only a small number of iterations are needed to obtain an estimator as stat-
istically ef!cient as the global one. As far as we know, this is the !rst work to discuss the statistical
properties of the DQN methods. Extensive numerical studies conducted on both simulation and
real datasets are presented to illustrate the !nite sample performance. To conclude this work,
we discuss some interesting topics for future study. First, the DQN method proposed here requires
that data among different worker computers are homogenous. This requirement may be dif!cult
to satisfy for certain applications. Therefore, solving this problem should be an exciting topic for
future research. In addition, the proposed algorithm ignores privacy in inter-computer communi-
cation. This could be of great concern when sensitive information needs to be transferred.
Conducting DQN while ensuring data privacy will be investigated in the future.

Con"ict of interest: None declared.

Funding
Shuyuan Wu’s research is partially supported by the Shanghai Research Center for Data Science
and Decision Technology. Danyang Huang’s research is partially supported by the National
Natural Science Foundation of China (No. 12071477), fund for building world-class universities
(disciplines) of Renmin University of China, and Public Computing Cloud, Renmin University of
China. Hansheng Wang’s research is partially supported by the National Natural Science
Foundation of China (No. 11831008) and the Open Research Fund of Key Laboratory of
Advanced Theory and Application in Statistics and Data Science (KLATASDS-MOE-ECNU-
KLATASDS2101).

Data availability
The datasets were derived from sources in the public domain: the of!cial website of THU Chinese
Text Classi!cation Package (http://thuctc.thunlp.org).

Appendices
Appendix A: Proof of the Main Theoretical Results
For simplicity, we de!ne the following notation in the proof. De!ne yt = L̇(bθstage,t+1) − L̇(bθstage,t)
and st =bθstage,t+1 −bθstage,t for t ≥ 1; particularly, y0 = L̇(bθstage,1) − L̇(bθstage,0) and
s0 =bθstage,1 −bθstage,0. In addition, for the BFGS updating, according to (2.2), de!ne Ht+1 =
V⊤

t HtVt + ρtsts⊤
t , where Vt = Ip − ρtyts⊤

t and ρt = 1/(s⊤
t yt). For SR1 updating, according to

(2.1), de!ne Ht+1 = Ht + (v⊤
t yt)−1(vtv⊤

t), for t ≥ 1, where vt = st − Htyt. Particularly,
H0 = M−1PM

m=1 H(m,0).

A.1 Proof of Theorem 1
We decompose the theorem proof into two parts. In the !rst part, we show that the distance be-
tween bθstage,1 and bθge is bounded by κ(M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 +

k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)kbθstage,0 − θ0k with probability tending

to 1. In the second part, we verify that when N(p log p)2/n4 ! 0, then kbθstage,1 −bθgek = op(N−1/2).
Part 1. To analyse kbθstage,1 −bθgek, we !rst de!ne the following ‘good events’:

E0= kbθge − θ0k ≤ τmin

4Cmax

⇢ �

Em= kbθ(m) − θ0k ≤ min
τmin

4Cmax
, δ

⇢ �
, n−1

X

i∈Sm

C(Xi, Yi) ≤ 2Cmax,

(

kL̈(m)(θ0) − Ω(θ0)k2 ≤ δτmin

4
, kL̇(m)(θ0)k ≤ (1 − δ)τminδmin

4

�

(A.1)

1340 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

http://thuctc.thunlp.org

where δmin = min {δ, δτmin/(4Cmax)}. By Lemma 2, we know P(
SM

m=0 E
c
m) ! 0. In addition, it

could be veri!ed that the events
TM

m=0 E
0
m de!ned in Lemma 3 hold under

TM
m=0 Em. Thus, it suf-

!ces to analyse the upper bound of kbθstage,1 −bθgek under
TM

m=0 Em and
TM

m=0 E
0
m.

We then proceed to study Part 1. Recall the de!nition of bθstage,1, then by (C5), we have
bθstage,1 =bθstage,0 − M−1PM

m=1 {L̈(m)(bθ(m))}−1L̇(bθstage,0). In addition, de!ne bθnr,1 =bθstage,0 −
{L̈(bθstage,0)}−1L̇(bθstage,0) to represent the one-step Newton–Raphson estimator. Then, by the tri-
angle inequality, we have

kbθstage,1 −bθgek ≤ kbθstage,1 −bθnr,1k + kbθnr,1 −bθgek

= bθstage,0 − M−1
XM

m=1

�
L̈(m)(bθ(m))

 −1L̇(bθstage,0)

�����

−
h
bθstage,0 −

�
L̈(bθstage,0)

 −1L̇(bθstage,0)
i��� + kbθnr,1 −bθstage,1k

=
�
L̈(bθstage,0)

 −1 − M−1
XM

m=1

�
L̈(m)(bθ(m))

 −1

" #

L̇(bθstage,0)

�����

����� + kbθnr,1 −bθgek

Denote Δ1 = {L̈(bθstage,0)}−1 − M−1PM
m=1 {L̈(m)(bθ(m))}−1. We then investigate Δ1, bθnr,1 −bθge, and

L̇(bθstage,0) in the following three steps, respectively.
Step 1. By the triangle inequality, we have kΔ1k2 ≤ k

�
L̈(bθstage,0)

 −1 −
�
L̈(θ0)

 −1k2 + k
�
L̈(θ0)

 −1 −
M−1PM

m=1
�
L̈(m)(θ0)

 −1k2 + kM−1PM
m=1 {L̈(m)(θ0)}−1 − M−1PM

m=1 {L̈(m)(bθ(m))}−1k2 := kΔ(1)
1 k2 +

kΔ(2)
1 k2 + kΔ(3)

1 k2. We proceed to calculate the three terms separately.
Step 1.1. First, for any matrix B, we have k(B + ΔB)−1 − B−1k2 ≤ kB−1k2

2kΔBk2 (Jordan et al.,
2019). Substituting B = L̈(θ0) and ΔB = L̈(bθstage,0) − L̈(θ0), it could be shown that

kΔ(1)
1 k2 ≤

���
�
L̈(θ0)

 −1
���

2

2

���L̈(bθstage,0) − L̈(θ0)
���

2
≤ 4

(1 − δ)2τ2
min

2Cmaxkbθstage,0 − θ0k

The second inequality holds because k
�
L̈(θ0)

 −1k2 ≤ 2/{(1 − δ)τmin} under
TM

m=0 E
0
m and

kL̈(bθstage,0) − L̈(θ0)k2 ≤ 2Cmaxkbθstage,0 − θ0k under
TM

m=0 Em. Consequently, there exists a constant
κ > 0 such that kΔ(1)

1 k2 ≤ κkbθstage,0 − θ0k/(6 × 2Cmax).
Step 1.2 Next, we analyse Δ(2)

1 . It could be shown that

Δ(2)
1 = M−1

XM

m=1

�
L̈(m)(θ0)

 −1�L̈(θ0) − L̈(m)(θ0)
 �
L̈(θ0)

 −1

= M−1
XM

m=1

⇣⇥�
L̈(m)(θ0)

 −1 −
�
L̈(θ0)

 −1⇤�L̈(θ0) − L̈(m)(θ0)
 �
L̈(θ0)

 −1

+
�
L̈(θ0)

 −1�L̈(θ0) − L̈(m)(θ0)
 �
L̈(θ0)

 −1
⌘

= M−1
XM

m=1

�
L̈(m)(θ0)

 −1�L̈(θ0) − L̈(m)(θ0)
 �
L̈(θ0)

 −1�L̈(θ0) − L̈(m)(θ0)
 �
L̈(θ0)

 −1

We then have kΔ(2)
1 k2 ≤ k{L̈(m)(θ0)}−1k2k

�
L̈(θ0)

 −1k2
2 × M−1PM

m=1 kL̈(θ0) − L̈(m)(θ0)k2
2 ≤

6{(1 − δ)3 τ3
min}−1 × 8M

PM
m=1 kL̈(m)(θ0) − Ω(θ0)k2

2. This is because kL̈(θ0) − L̈(m)(θ0)k2
2 ≤

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1341
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

2{kL̈(θ0) −Ω(θ0)k2
2 +kL̈(m)(θ0) −Ω(θ0)k2

2} and kL̈(θ0) −Ω(θ0)k2
2 ≤ kM−1PM

m=1 (L̈(m)(θ0) −Ω(θ0))k2
2

≤ (1 +1/M)M−1PM
m=1 kL̈(m)(θ0) −Ω(θ0)k2

2. Therefore, there exists a constant κ >0 such that

��Δ(2)
1

��
2 ≤ κ

6 × 2Cmax
M−1

XM

m=1

kL̈(m)(θ0) −Ω(θ0)k2
2

Step 1.3. Moreover, it could be proved that

Δ(3)
1 = M−1

XM

m=1

�
L̈(m)(bθ(m))

 −1
n
L̈(m)(bθ(m)) − L̈(m)(θ0)

o�
L̈(m)(θ0)

 −1

By Taylor’s expansion, Cauchy–Schwarz inequality, and Step 1.2, we have

kΔ(3)
1 k2 ≤ M−1

XM

m=1

�
L̈(θ0)

 −1
n
L̈(m)(bθ(m)) − L̈(m)(θ0)

o�
L̈(θ0)

 −1

�����

�����
2

+ κ
6 × 2Cmax

M−1
XM

m=1

n
kL̈(m)(θ0) −Ω(θ0)k2

2 +kbθ(m) − θ0k2
o

(A.2)

Hence, it suf!ces to study the !rst term of (A.2). Using Taylor’s expansion again, it could be veri-
!ed that

L̈(m)(bθ(m)) − L̈(m)(θ0) = L⃛(m) (θ0)
n
(bθ(m) − θ0) ⊗ Ip

o
+
�
L ⃛

(m) (ξ(m)) − L⃛(m) (θ0)
 �

(bθ(m) − θ0) ⊗ Ip

=
n
L⃛(m) (θ0) − Ω̇(θ0)

on
(bθ(m) − θ0) ⊗ Ip

o
+ Ω̇(θ0)

n
(bθ(m) − θ0) ⊗ Ip

o
+O

where ξ(m) =η(m)
bθ(m) + (1−η(m))θ0 for some 0 ≤ η(m) ≤ 1, O= {L⃛(m) (ξ(m))− L⃛(m) (θ0)}{(bθ(m) −θ0)⊗Ip}.

In addition, we have kOk2 ≤ 2Cmaxkbθ(m) − θ0k2 by (C4). Replacing the results back into (A.2), we
obtain kΔ(3)

1 k2 ≤ κ(M−1 PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) −
θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)/(6 × 2Cmax). Combining the above-mentioned results, we have
kΔ1k2 ≤ κ(M−1PM

m=1 [kbθ(m) − θ0k2 +kL̈(m)(θ0) −Ω(θ0)k2
2 +k{L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] +

kbθstage,0 − θ0k)/(4Cmax). This !nishes the proof of Step 1.
Step 2. In this step, we study bθnr,1 −bθge and L̇(bθstage,0). From Theorem 5.3 in Bubeck (2015),

when kbθstage,0 −bθgek ≤ λmin{L̈(bθge)}/(2Cge), where Cge is the global Lipschitz constant of L̈(θ)
such that kL̈(θ0) − L̈(θ00)k ≤ Cgekθ0 − θ00k, we have

kbθnr,1 −bθgek ≤ Cge

λmin
�
L̈(bθge)

 kbθstage,0 −bθgek2 ≤ 4Cmax

(1 − δ)τmin
kbθstage,0 −bθgek2 (A.3)

Moreover, by (C4), it could be veri!ed that kL̇(bθstage,0) − L̇(bθge)k ≤ 2Cmax kbθstage,0 −bθgek. This !n-
ishes the proof of Step 2.

Combining the results of Steps 1 and 2, we have kbθstage,1 −bθgek ≤ κ(M−1PM
m=1 [kbθ(m) −θ0k2 +

kL̈(m)(θ0)−Ω(θ0)k2
2 +k{L⃛(m) (θ0)− Ω̇(θ0)}{(bθ(m) −θ0)⊗Ip}k2]+kbθstage,0 −θ0k+kbθge −θ0k) kbθstage,0 −

bθgek with probability tending to 1. Noting that kbθge − θ0k is a negligible higher-order term, and
we !nish the !rst part.

Part 2. To prove the second part, we separately analyse the convergence properties of
M−1PM

m=1 kbθ(m) − θ0k2, M−1PM
m=1 kL̈(m)(θ0) −Ω(θ0)k2

2, M−1PM
m=1 {L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗

Ip} and kbθstage,0 − θ0k2. By Lemma 1 we know

1342 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Ekbθ(m) − θ0k2 ≤ C1n−1C2
G

�
1 + o(1)

E
n
kL̈(m)(θ0) − Ω(θ0)k2

2

o
≤ C2

log p
n

�
1 + o(1)

E
���
�
L ⃛

(m) (θ0) − Ω̇(θ0)
 �

(bθ(m) − θ0) ⊗ Ip
 ���

2
≤ C4

p
ÅÅÅÅÅÅ
log p

p

n
�
1 + o(1)

E
⇥
kbθstage,0 − θ0k2⇤ ≤

✓
2C2

G

τ2
minN

+ C3C2
GC2

H log p
τ4
minn2

◆�
1 + o(1)

for some positive constants C1–C4. Moreover, by Markov’s inequality, we have

M−1
XM

m=1

n
kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2

o
+
��� L⃛(m) (θ0) − Ω̇(θ0)

 �
(bθ(m) − θ0) ⊗ Ip

 ��
2

+ kbθstage,0 − θ0k = Op(n−1p
ÅÅÅÅÅÅ
log p

p
+ N−1/2) and kbθstage,0 − θ0k = Op(1/

ÅÅÅ
N

p
+

ÅÅÅÅÅÅ
log p

p
/n)

(A.4)

Hence, kbθstage,1 −bθgek = Op(n−2p log p) + op(N−1/2). Furthermore, under the condition
N(p log p)2/n4 ! 0, we have N1/2kbθstage,1 −bθgek !p 0, which !nishes the proof of the second
part, thereby completing the proof of the entire theorem.

A.2 Proof of Theorem 2
To verify Theorem 2, we !rst prove that kbθstage,2 −bθgek ≤ κ2(M−1PM

m=1 [kbθ(m) − θ0k2 +
kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)kbθstage,1 −bθgek for

some constant κ2 > 0, with probability tending to 1. Next, we verify the optimality of bθstage,2 under
the condition Np4(log p)3/n6 ! 0.

Note that by Algorithms 2 and 4, the proposed methods realise the global update of the approxi-
mated Hessian inverse. In other words, the two-stage estimator update (2.4) is equal to
bθstage,2 =bθstage,1 − H1L̇(bθstage,1). For convenience, instead of directly studying bθstage,1−
H1L̇(bθstage,1), we investigate bθstage,1 − (B1)−1L̇(bθstage,1), where B1 = H−1

1 . By the triangle inequality,
it could be veri!ed that

kbθstage,2 −bθgek ≤ kbθstage,1 −
�
L̈(bθge)

 −1L̇(bθstage,1) −bθgek +
���
h�
L̈(bθge)

 −1 − B−1
1

i
L̇(bθstage,1)

���

We denote Δ(1)
2 =bθstage,1 − {L̈(bθge)}−1L̇(bθstage,1) −bθge and Δ(2)

2 = [{L̈(bθge)}−1 − B−1
1]L̇(bθstage,1), where

Δ(1)
2 is independent of SR1 or BFGS update. Furthermore, by similar analytical techniques as those

used in (A.3), we have kΔ(1)
2 k ≤ κ02kbθstage,1 −bθgek2 for some constant κ02 > 0 with probability tend-

ing to 1. Hence, it suf!ces to study Δ(2)
2 . Therefore, we investigate Δ(2)

2 under the good events
TM

m=0 Em and E0 by SR1 and BFGS update separately.
Part 1 (SR1). By the Sherman–Morrison formula (Burden et al., 2015, Theorem 10.8), the SR1

updating formula can be expressed as

B1 = B0 + (y0 − B0s0)(y0 − B0s0)⊤

(y0 − B0s0)⊤y0

where B0 = H−1
0 . Then, we proceed to study Δ(2)

2 , which can be rewritten as

Δ(2)
2 =

�
L̈(bθge)

 −1�B1 − L̈(bθge)

B−1

1 L̇(bθstage,1) (A.5)

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1343
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Furthermore, when s1 = B−1
1 L̇(bθstage,1), by the triangle inequality, we have

kΔ(2)
2 k ≤ k

�
L̈(bθge)

 −1k2
�
ky1 − B1s1k + ky1 − L̈(bθge)s1k

We then study y1 − B1s1 and y1 − L̈(bθge)s1.
Step 1. First, we investigate y1 − B1s1. By (2.1), we have

y1 − B1s1 = y1 − B0s1 + r0r⊤
0 s1

r⊤
0 s0

where rt = yt − Btst for any t > 0. Then by Taylor’s expansion, it could be proved that

ky1 − B0s1k ≤
���(L̈(bθstage,1) − B0)(bθstage,2 −bθstage,1) + L̈(ξ1)(bθstage,2 −bθstage,1)

− L̈(bθstage,1)(bθstage,2 −bθstage,1)
���

≤ 2
n
kL̈(bθstage,1) − B0k2kbθstage,1 −bθgek + kL̈(ξ1) − L̈(bθstage,1)k2kbθstage,1 −bθgek

o

≤ 2
n
kL̈(bθstage,1) − B0k2 + 2Cmaxkbθstage,1 −bθgek

o
kbθstage,1 −bθgek

(A.6)

Here ξ1 = η1
bθstage,2 + (1 − η1)bθstage,1 with some 0 ≤ η1 ≤ 1. The second inequality in (A.6) holds by

the triangle inequality kbθstage,2 −bθstage,1k ≤ kbθstage,2 −bθgek + kbθstage,1 −bθgek and Lemma 4. The last
inequality in (A.6) holds by (C4). In addition, from (D.5), it could be veri!ed that

|(r⊤
0 s0)−1(r0r⊤

0 s1)| ≤ kr0kks1k
c1ks0k

= kL̇(bθstage,1) − L̇(bθstage,0) − B0(bθstage,1 −bθstage,0)kkbθstage,2 −bθstage,1k
c1kbθstage,1 −bθstage,0k

= k
�
L̈(bθstage,1) − B0

s0 +

�
L̈(ξ0) − L̈(bθstage,1)

s0kkbθstage,2 −bθstage,1k

c1kbθstage,1 −bθstage,0k

≤ 2
n
kL̈(bθstage,1) − B0k2kbθstage,1 −bθgek + 4Cmaxkbθstage,1 −bθgekkbθstage,0 −bθgek

o

(A.7)

Here ξ0 = η0
bθstage,1 + (1 − η1)bθstage,0 with some 0 ≤ η0 ≤ 1, and the last inequality holds by Lemma

4 and (C4). Combining the results of (A.6) and (A.7), we have ky1 − B1s1k ≤ 4{kL̈(bθstage,1) −
B0k2 + 4Cmaxkbθstage,0 −bθgek}kbθstage,1 −bθgek. Furthermore, kL̈(bθstage,1) − B0k2 ≤ kL̈(bθstage,1)k2

2

k{L̈(bθstage,1)}−1 − M−1PM
m=1 L̈(m)(bθ(m))k2. Using an analysis technique similar to the one used in

Appendix A.1 Step 1 to study the value of Δ1, we have kL̈(bθstage,1) − B0k2 ≤ κ02(M−1PM
m=1 [kbθ(m) −

θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k). Hence, we

have ky1 − B1s1k ≤ κ02(M−1PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m)

−θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k + kbθge − θ0k)kbθstage,1 −bθgek. This accomplishes the proof of Step 1.
Step 2. In this step, we show that y1 − L̈(bθge)s1 is a negligible higher-order term. By Taylor’s ex-

pansion, it could be proved that

ky1 − L̈(bθge)s1k = kL̇(bθstage,2) − L̇(bθstage,1) − L̈(bθge)(bθstage,2 −bθstage,1)k

≤ k
�
L̈(ξ1) − L̈(bθge)

kbθstage,2 −bθstage,1k ≤ 4Cmaxkbθstage,1 −bθgek2

(A.8)

The last inequality holds by Lemma 4 and (C4). Combining the results of Steps 1 and 2, we !nish
the !rst part of the theorem proof.

1344 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Part 2 (BFGS). Recall Δ(2)
2 = {L̈(bθge)}−1{B1 − L̈(bθge)}B−1

1 L̇(bθstage,1) = {L̈(bθge)}−1 {B1 − L̈(bθge)}s1.
Denote

P0 = Ip −
�
L̈(bθge)

 1/2s0

h�
L̈(bθge)

 −1/2y0

i⊤

y⊤
0 s0

Then it could be shown by Broyden et al. (1973, Lemma 5.1) that

E1 = P⊤
0 E0P0 +

�
L̈(bθge)

 −1/2�y0 − L̈(bθge)s0
 h�

L̈(bθge)
 −1/2y0

i⊤

y⊤
0 s0

+
�
L̈(bθge)

 −1/2y0
�
y0 − L̈(bθge)s0

 ⊤�L̈(bθge)
 −1/2P0

y⊤
0 s0

where E0 = {L̈(bθge)}−1/2{B0 − L̈(bθge)}{L̈(bθge)}−1/2 and E1 = {L̈(bθge)}−1/2{B1 − L̈(bθge)}{L̈(bθge)}−1/2.
Then it could be proved that

{L̈(bθge)}1/2Δ(2)
2

= E1
�
L̈(bθge)

 1/2s1 = P⊤
0 E0P0

�
L̈(bθge)

 1/2s1 +
�
L̈(bθge)

 −1/2�y0 − L̈(bθge)s0

y⊤

0 s1

y⊤
0 s0

+
�
L̈(bθge)

 −1/2y0
�
y0 − L̈(bθge)s0

 ⊤�L̈(bθge)
 −1/2P0s1

y⊤
0 s0

:= Δ(2,1)
2 + Δ(2,2)

2 + Δ(2,3)
2

Note that ky0 − L̈(bθge)s0k ≤ kbθstage,0 −bθgek2 by (A.8). Applying similar analytical techniques as in
Part 1, and using |y0s0| = |s⊤

0 L̈(ξ0)s0| ≥ c1ks0k2 for some positive constant c1 > 0, it could be veri-
!ed that

kΔ(2,2)
2 k ≤ kbθstage,0 −bθgek2ky0kks1k

c1ks0k2 ≤ kbθstage,0 −bθgek2kL̈(ξ0)k2ks1k
c1

���kbθstage,0 −bθgek − kbθstage,1 −bθgek
���

≤ κ02kbθstage,0 −bθgekkbθstage,1 −bθgek

Similarly, for kP0k ≤ 1 + 1/c1, we have kΔ(2,3)
2 k ≤ κ02kbθstage,0 −bθgekkbθstage,1 −bθgek. Thus, it can be

veri!ed that kΔ(2,1)
2 k ≤ κ02kB0 − L̈(bθge)k2kbθstage,1 −bθgek. By similar analysis of kL̈(bθstage,0) − B0k2 as

in Appendix A.1 Step 1, we have kB0 − L̈(bθge)k ≤ κ02(M−1PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) −

Ω(θ0)k2
2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k + kbθge − θ0k). Thus, Δ(2)

2 could

be bounded by kΔ(2)
2 k ≤ κ02(M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 + k{ L⃛(m) (θ0) −

Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k + kbθge − θ0k)kbθstage,1 −bθgek. This !nishes the proof of
Part 2 (BFGS).

Next, by (A.4) again, we have kbθstage,2 −bθgek = Op(p2(log p)3/2/n3) + op(1/
ÅÅÅ
N

p
). As a result,

under the condition N(p4(log p)3)/n6 ! 0, we have kbθstage,2 −bθgek = op(N−1/2), which accom-
plishes the whole theorem proof.

A.3 Proof of Corollary 1

First, to prove kbθstage,K −bθgek ≤ κK (M−1PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) −
Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k)Kkbθstage,0 − θ0k, we verify that kbθstage,K −bθgek ≤

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1345
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

κK (M−1PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2]+
kbθstage,0 − θ0k)kbθstage,K−1 −bθgek. In addition, by the triangle inequality, we have

kbθstage,k −bθgek = kbθstage,k−1 − B−1
k−1L̇(bθstage,k−1) −bθgek

≤ kbθstage,k−1 −
�
L̈(bθge)

 −1L̇(bθstage,k−1) −bθgek + k
⇥�
L̈(bθge)

 −1 − B−1
k−1

⇤
L̇(bθstage,k−1)k

(A.9)

for any 2 ≤ k ≤ K. Similar to the analysis of (A.3) at the beginning of Appendix A.2, it could be
proved that kbθstage,k−1 − {L̈(bθge)}−1L̇(bθstage,k−1) −bθgek ≤ κ0k−1kbθstage,k−1 −bθgek2 with probability
tending to 1. Because the !rst term in (A.9) is a negligible higher-order term, it suf!ces to study
the upper bound of the second term in (A.9).

Denote Δ3 = [{L̈(bθge)}−1 − B−1
k−1]L̇(bθstage,k−1); then it could be veri!ed that

kΔ3k =
���L̈(bθge)

 −1�B−1
k−1 − L̈(bθge)

B−1

k−1L̇(bθstage,k−1)
��

≤
���L̈(bθge)

 −1��
2

��B−1
k−1 − L̈(bθge)

��
2

��B−1
k−1

��
2kL̈(ξk−1)

��
2kbθstage,k−1 −bθgek

By Lemmas 3 and 4, we know k{L̈(bθge)}−1k2 and kL̈(ξk−1)k2 are both bounded by some constant
C > 0 with probability tending to 1. As a consequence, to prove Corollary 1, it suf!ces to prove
that for any 2 ≤ k ≤ K, kBk − L̈(bθge)k ≤ κk(M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 +

k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k) with probability tending to 1. We then
verify the inequality by the inductive method under the SR1 and BFGS update separately as
follows.

Part 1 (SR1). Assume that kBk−1 − L̈(bθge)k2 ≤ κk−1(M−1PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) −

Ω(θ0)k2
2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] + kbθstage,0 − θ0k). The goal is to verify that

kBk − L̈(bθge)k2 ≤ κk(M−1PM
m=1 [kbθ(m) −θ0k2 +kL̈(m)(θ0)−Ω(θ0)k2

2 +k{L⃛(m) (θ0)− Ω̇(θ0)}{(bθ(m) −θ0)⊗
Ip}k2]+ kbθstage,0 −θ0k). To this end, by the SR1 updating formula and (D.5), we have

kBk − L̈(bθge)k2 ≤ kBk−1 − L̈(bθge)k2 + krk−1k
c1ksk−1k

Furthermore, it could be proved that, with probability tending to 1, we have

krk−1k
c1ksk−1k

≤ kL̈(bθstage,k−1) − Bk−1k2ksk−1k +
��L̈(ξk−1) − L̈(bθstage,k−1)

��
2ksk−1k

c1kbθstage,k −bθstage,k−1k

≤ c−1
1

n
kL̈(bθge) − Bk−1k2 + kL̈(bθstage,k−1) − L̈(bθge)k2 +

��L̈(ξk−1) − L̈(bθstage,k−1)
��

2

o

≤ κk M−1
XM

m=1

h
kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + kbθstage,0 − θ0k

+
�
L⃛(m) (θ0) − Ω̇(θ0)

 �
(bθ(m) − θ0) ⊗ Ip

 i⌘

The last inequality holds because kbθstage,k−1 −bθgek is a higher-order term compared to

M−1 PM
m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2

2 + k{ L ⃛
(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] +

kbθstage,0 − θ0k. This !nishes the proof of the !rst part.

1346 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Part 2 (BFGS). Similar to the proof of Part 1, assume that kBk−1 − L̈(bθge)k2 ≤
κk−1(M−1PM

m=1 [kbθ(m) − θ0k2 + kL̈(m)(θ0) − Ω(θ0)k2
2 + k{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗ Ip}k2] +

kbθstage,0 − θ0k). By the BFGS updating formula and Broyden et al. (1973, Lemma 5.1), we have

Ek = P⊤
k−1Ek−1Pk−1 +

�
L̈(bθge)

 −1/2�yk−1 − L̈(bθge)sk−1
 h
L̈(bθge)−1/2yk−1

i⊤

y⊤
k−1sk−1

+
�
L̈(bθge)

 −1/2yk−1
�
yk−1 − L̈(bθge)sk−1

 ⊤�L̈(bθge)
 −1/2Pk−1

y⊤
k−1sk−1

where

Pk−1 = Ip −
�
L̈(bθge)

 1/2sk−1

h�
L̈(bθge)

 −1/2yk−1

i⊤

y⊤
k−1sk−1

Ek = {L̈(bθge)}−1/2{Bk − L̈(bθge)}{L̈(bθge)}−1/2, and Ek−1 = {L̈(bθge)}−1/2{Bk−1 − L̈(bθge)} {L̈(bθge)}−1/2.

Then, using similar analytical techniques as in Part 2 of Appendix A.2, and that |y⊤
k−1sk−1| ≥

c1ksk−1k2 for some positive constant c1 > 0, it could be veri!ed that kEkk ≤ C{kBk−1 − L̈(bθge)k2 +
kbθstage,k−1 −bθgek} with probability tending to 1. This !nishes the proof of the second part.

Next, applying (A.4) and the inductive method again, it could be proved that kbθstage,k −bθgek =
Op(pk(log p)(k+1)/2/nk+1) + op(1/

ÅÅÅ
N

p
). As a consequence, under the condition

N{p2k(log p)k+1}/n2k+2 ! 0, we have kbθstage,k −bθgek = op(N−1/2), which accomplishes the whole
corollary proof.

Appendix B: Some Useful Lemmas

Lemma 1 Assume the technical conditions (C1)–(C6) hold. Then, the following equations
hold for some positive constants C1–C4 and 1 ≤ k ≤ 4.

E
�
kbθ(m) − θ0kk ≤ C1n−k/2C2

G

�
1 + o(1)

(B.1)

E
�
kL̈(m)(θ0) − Ω(θ0)kk

2

≤ C2
logk/2 (2p)Ck

H

nk/2 (B.2)

E
⇥
kbθstage,0 − θ0k2⇤ ≤ 2C2

G

τ2
minN

+ C3C2
G

τ4
minn2

C2
H log p + C2

maxC2
G

τ2
min

✓ ◆⇢ ��
1 + o(1)

(B.3)

E
���
�
L⃛(m) (θ0) − Ω̇(θ0)

 �
(bθ(m) − θ0) ⊗ Ip

 ���
2

≤ C4
p
ÅÅÅÅÅÅ
log p

p

n
�
1 + o(1)

(B.4)

Proof. Given (B.1)–(B.3) in Theorem 1, B.0.1, Lemma 7 in Zhang et al. (2013) and (C6), it
suf!ces to verify (B.4). To this end, operator G(m) = L̇(m) − Ė(L(m)), and Gj

(m)

represents the jth element of G(m); then we have { L⃛(m) (θ0) − Ω̇(θ0)}
{(bθ(m) − θ0) ⊗ Ip} = [G̈

1
(m)(θ0)(bθ(m) − θ0), . . . , G̈

p
(m)(θ0)(bθ(m) − θ0)]. Consequently,

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1347
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

by the Cauchy–Schwarz inequality, it could be proved that

E
���L ⃛

(m) (θ0) − Ω̇(θ0)
 �

(bθ(m) − θ0) ⊗ Ip
 ��

2 ≤
Xp

j=1

E
��G̈

j
(m)(θ0)(bθ(m) − θ0)

��

≤
XP

j=1

n
EkG̈j

(m)(θ0)k2
2Ekbθ(m) − θ0k2

o1/2

The !rst inequality holds because kBk2 ≤ kBkF for any matrix B, and k · kF repre-
sents the Frobenius norm. By Lemma 16 in Zhang et al. (2013), we have

EkG̈
j
(m)(θ0)k2

2 ≤ O(log p/n). This leads to Ek{ L⃛(m) (θ0) − Ω̇(θ0)}{(bθ(m) − θ0) ⊗
Ip}k2 ≤ O(p

ÅÅÅÅÅÅ
log p

p
/n). □

Lemma 2 Assume the technical conditions (C1)–(C6) hold. Then, we have P(
SM

m=0 E
c
m) !

0, where Ems are de!ned in (A.1).

Proof. The proof is shown in Lemma 7 in Zhang et al. (2013) and D.1 in Jordan et al.
(2019). □

Lemma 3 Assume the technical conditions (C1)–(C6) hold. Let new events

E0(m) = λmin
�
L̈(θ)

≥ (1 − δ)τmin

2
for θ ∈ {θ0,bθstage,0,bθge},

⇢

kbθstage,0 −bθgek ≤ τmin

2Cmax
:= δ0, λmin

�
L̈(m)(θ)

≥ (1 − δ)τmin

2
for θ ∈ {θ0,bθ(m)},

max
θ∈B(θ̂ge,δ0)

kL̈(θ)k2 ≤ 2Cmaxδ0 + δτmin

4
+ τmax := C0

max

)

We have P(
TM

m=0 Em) < P(
TM

m=0 E
0
m), where Ems are de!ned in (A.1).

Proof. We analyse the three terms under the event
TM

m=0 Em separately. First, we prove
that

λmin
�
L̈(bθstage,0)

≥ λmin

�
Ω(θ0)

− kL̈(θ0) − Ω(θ0)k2 − kL̈(bθstage,0) − L̈(θ0)k2

≥ τmin − δτmin

2
− 2Cmaxkbθstage,0 − θ0k2 ≥ (1 − δ)τmin

2

The !rst inequality holds because λmin(B1) = minkuk=1 u⊤(B1 − B2 + B2)u ≥
minu1=1 u⊤

1 (B1 − B2)u1 + minu2=1 u⊤
2 B2u2 ≥ −kB1 − B2k2 + λmin(B2) for any sym-

metric matrixes B1 and B2. The last inequality holds because kbθstage,0 − θ0k ≤
τmin/(4Cmax) under

TM
m=0 Em. By similar technical analysis, we know that

λmin{L̈(θ)} ≥ (1 − δ)τmin/2 when θ = θ0 or θ =bθge and λmin{L̈(m)(θ)} ≥
(1 − δ)τmin/2 for θ ∈ {θ0,bθ(m)}. Next, it is obvious that kbθstage,0 −bθgek ≤ kbθstage,0 −
θ0k + kbθge − θ0k ≤ τmin/(2Cmax) under

TM
m=0 Em. Moreover, using the triangle in-

equality, we have

1348 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

max
θ∈B(θ̂ge,δ0)

kL̈(θ)k2 ≤ max
θ∈B(θ̂ge,δ0)

kL̈(θ) − L̈(θ0)k2 + kL̈(θ0) − Ω(θ0)k2 + kΩ(θ0)k2

≤ 2Cmaxδ0 + δτmin

4
+ τmax

This accomplishes the whole lemma proof. □

Lemma 4 Assume the technical conditions (C1)–(C6) hold. Then, there exists a positive
constant ρK < 1 such that for any K > 0, kbθstage,K −bθgek ≤ ρK−1

K kbθstage,1 −bθgek
with probability tending to 1.

Proof. We !rst verify the lemma when K = 2. For the SR1 update,

bθstage,2 −bθge =bθstage,1 − H1L̇(bθstage,1) −bθge

=bθstage,1 −bθge − H1
�
L̇(bθstage,1) − L̇(bθge)

=bθstage,1 −bθge − H1L̈(bθge)(bθstage,1 −bθge)

+ H1

h
L̈(bθge)

ˇbθstage,1 −bθge
�

−
�
L̇(bθstage,1) − L̇(bθge)

 i

= H1
�
B1 − L̈(bθge)

 ˇbθstage,1 −bθge
�

+ O

Here O = H1[L̈(bθge)(bθstage,1 −bθge) − {L̇(bθstage,1) − L̇(bθge)}]. By Taylor’s expansion,
O is a negligible higher-order term. Then, it suf!ces to analyse H1{B1 − L̈(bθge)}.
We have

B1 − L̈(bθge) = B0 − L̈(bθge) + (y0 − B0s0)(y0 − B0s0)⊤

(y0 − B0s0)⊤y0

By similar analysis to that in Appendix A, Sections A.1 and A.2, it could be easily
found that B0 − L̈(bθge) and {(y0 − B0s0)⊤y0}−1(y0 − B0s0)(y0 − B0s0)⊤ both con-
verge to 0 in probability. Consequently, with probability tending to 1, there exists
a small positive number ρ1 < 1, such that kB1 − L̈(bθge)k2kH1k2 ≤ ρ1/2. Thus, we
prove that kbθstage,2 −bθgek ≤ ρ1kbθstage,1 −bθgek.

Similarly, we obtain the linear convergence rate for bθstage,K using the same ana-
lytical techniques used to study bθstage,2. This !nishes the lemma for SR1 updating.
The proof for BFGS updating is shown in Lemma 3 in Mokhtari et al. (2018). □

Appendix C: Additional Numerical Details
C.1 Distributed K-stage SR1 algorithm
We introduce the detailed multi-stage algorithm with the SR1 updating strategy, not speci!ed in
Section 2.4. The key idea of the SR1 updating strategy is the same as that of BFGS updating strat-
egy; that is, we establish a distributed version from the classical single computer updating formula.
Nevertheless, the denominator in (2.1) involves H(t). As a result, we need to design a distributed
algorithm more skilfully, so that the updated matrix of the distributed version is equivalent to
that of the global one, and the number of communication rounds remains the same as that of
the distributed BFGS updating algorithm. We !rst de!ne vk =bθstage,k+1 −bθstage,k −
Hk−1{L̇(bθstage,k+1) − L̇(bθstage,k)} for any k ≥ 1. In particular, we denote H(m,−1) = H(m,0) and
v−1 = y−1 = 0. The speci!c algorithm is given in Algorithm 4.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1349
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

C.2 Distributed K-stage Newton–Raphson algorithm
Next, we introduce the detailed multi-stage algorithm but using the Newton–Raphson updating
strategy, which is not speci!ed in Section 3.2.

Appendix D: Updating Method of Quasi-Newton Matrix
We introduce the detailed intuition and proofs to derive (2.1) and (2.2) in the main text. To this
end, denote y(t) = L̇(bθ(t+1)) − L̇(bθ(t)) and s(t) =bθ(t+1) −bθ(t).
1. SR1 Updates. Equation (2.1) is the simplest quasi-Newton matrix updating formula. Let H(t) be
the tth approximated Hessian inverse; we then derive H(t+1), satisfying the secant condition in
(1.2), using rank one updating. To this end, we use the undetermined coef!cient method, assuming
that

H(t+1) = H(t) + αuu⊤ (D.1)

for some undetermined coef!cient u ∈ Rp and α ∈ R. Then, according to (1.2), we have
s(t) = H(t+1)y(t) = (H(t) + αuu⊤)y(t). Then, it could be proved that

αu⊤y(t)u = s(t) − H(t)y(t) (D.2)

Note that αu⊤y(t) ∈ R is a scale, indicating that u and s(t) − H(t)y(t) share the same direction. Hence,
we denote u = s(t) − H(t)y(t); then (D.2) could be rewritten as α(s(t) − H(t)y(t))⊤y(t)(s(t) − H(t)y(t)) =
s(t) − H(t)y(t). Thus, we have α = {(s(t) − H(t)y(t))⊤y(t)}−1. Applying the results back to (D.1) leads to

H(t+1) = H(t) +
ˇ
s(t) − H(t)y(t)

�ˇ
s(t) − H(t)y(t)

�⊤

ˇ
s(t) − H(t)y(t)

�⊤y(t)
(D.3)

According to the Sherman–Morrison equation (Burden et al., 2015, Theorem 10.8), (D.3) could be
rewritten as

B(t+1) = B(t) +
ˇ
y(t) − B(t)s(t)

�ˇ
y(t) − B(t)s(t)

�⊤

ˇ
y(t) − B(t)s(t)

�⊤s(t)
(D.4)

Here B(t) = {H(t)}−1. When using the SR1 updating formula, it should be well de!ned.
Consequently, (D.3) and (D.4) would be used only if

���
ˇ
s(t) − H(t)y(t)�⊤s(t)

��� ≥ c1ks(t) − H(t)y(t)kks(t)k or
���
ˇ
y(t) − B(t)s(t)�⊤s(t)

��� ≥ c1ky(t) − B(t)s(t)kks(t)k
(D.5)

for some positive constant 0 < c1 < 1. Otherwise, we keep H(t+1) = H(t) or B(t+1) = B(t); see more
discussions in Conn et al. (1991) and Nocedal and Wright (1999).
2. SR2 (BFGS) Updates. SR1 updating is simple and easy to conduct. However, the positive def-
initeness of the approximated matrix (i.e. H(t)) cannot be guaranteed; that is, we cannot ensure
(y(t) − B(t)s(t))⊤s(t) > 0. The SR2 updating formula was proposed to address this problem. Similar
to SR1 updating, given H(t), we consider the determined coef!cient method to obtain the updating
matrix H(t+1). Here, for simplicity, instead of directly analysing H(t), we consider B(t) = {H(t)}−1

!rst. Thus, given B(t), assume that

B(t+1) = B(t) + auu⊤ + bvv⊤

1350 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

where u, v ∈ Rp and a, b ∈ R. When

�
L̇(bθ(t+1)) − L̇(bθ(t))

= B(t+1)(bθ(t+1) −bθ(t)) (D.6)

we obtain (B(t) + auu⊤ + bvv⊤)s(t) = y(t); this leads to

ˇ
au⊤s(t)�u +

ˇ
bv⊤s(t)�v = y(t) − B(t)s(t)

Algorithm 4 Distributed K-stage quasi-Newton (SR1) algorithm

Input: DQN(K−1) estimator bθstage,K−1, vK−3 on the central computer, bθstage,K−2, L̇(bθstage,K−2), yK−3,
and Hessian inverse approximation H(m,K−3) on the m-th worker

Output: DQN(K) estimator bθstage,K

The central computer broadcasts bθstage,K−1 and vK−3 to each worker

for m = 1, 2, . . . , M (distributedly) do

Compute L̇(m)(bθstage,K−1) and transfer it to the central computer

Update local Hessian inverse approximation by

H(m,K−2) = H(m,K−3) +
⇥
v⊤

K−3yK−3
⇤−1vK−3v⊤

K−3

end

The central computer computes L̇(bθstage,K−1) = M−1 PM
m=1 L̇(m)(bθstage,K−1) and broadcasts it to each worker

for m = 1, 2, . . . , M (distributedly) do

Compute v(m,K−2) = sK−2 − H(m,K−2)yK−2 and transfer it to the central computer

Calculate H(m,K−2)L̇(bθstage,K−1) and transfer it to the central computer.

end

The central computer computes vK−2 = M−1 PM
m=1 v(m,K−2) and

pK−1 = M−1 PM
m=1 H(m,K−2)L̇(bθstage,K−1) + vK−2v⊤

K−2L̇(bθstage,K−1)/(v⊤
K−2yK−2),

and obtains bθstage,K =bθstage,K−1 − pK−1.

Algorithm 5 Distributed K-stage Newton algorithm

Input: K−1-stage estimator bθstage,K−1 on the central computer

Output: K-stage estimator bθstage,K

The central computer broadcasts bθstage,K−1 to each worker

for m = 1, 2, . . . , M (distributedly) do

Compute L̇(m)(bθstage,K−1) and transfer it to the central computer

end

The central computer computes L̇(bθstage,K−1) = M−1 PM
m=1 L̇(m)(bθstage,K−1) and broadcasts it to each worker

for m = 1, 2, . . . , M (distributedly) do

Compute
�
L̈(m)(bθstage,K−1)

 −1L̇(bθstage,K−1) and transfer it to the central computer

end

The central computer computes
bθstage,K =bθstage,K−1 − M−1 PM

m=1
�
L̈(m)(bθstage,K−1)

 −1L̇(bθstage,K−1).

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1351
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

Of the many ways to determine u and v, we consider the following criterion:
u = y(t), au⊤s(t) = 1, v = B(t)s(t), and bv⊤s(t) = −1. Consequently, (D.6) could be rewritten as

B(t+1) = B(t) + y(t)
�
y(t)
 ⊤

�
s(t)
 ⊤y(t)

− B(t)s(t)
ˇ
B(t)s(t)

�⊤

�
s(t)
 ⊤B(t)s(t)

Finally, according to the Sherman–Morrison formula (Burden et al., 2015, Theorem 10.8), we ob-
tain the updating formula (2.2).

Moreover, there is another method to derive (2.2). To be more precise, H(t+1) is exactly the so-
lution of the following optimal problem:

min
H

kH − H(t)kW

s.t.H = H⊤, Hy(t) = s(t)
(D.7)

Here kHkW = kW1/2HW1/2kF represents the weighted Frobenius norm, and W could be any ma-
trix that satis!es Ws(t) = y(t). Analysing the optimal problem using (D.7), we !nd that the solution
of the problem (i.e. H(t+1)) is a matrix H that is the closest to H(t). In addition, H(t+1) should be
symmetric and satisfy the secant condition (D.6). For convex loss functions, it leads to (s(t))⊤y(t) >
0; thus, when H(t) is a positive de!nite, H(t+1) would also be positive de!nite; see more details in
Nocedal and Wright (1999).

Appendix E: Supplementary Numerical Results
In this subsection, we provide the supplementary numerical results, which are not presented in
Section 3.1. Speci!cally, to evaluate the performance of our proposed DQN method in
Example 2, we report the log(MSE), SD, IQR, and range of log(MSE). The numerical results
with different dimension p and local sample size n are given in Tables E6 and E7, respectively.
All the results are qualitatively similar to those in the main text.

Table E6. Log(MSE) values and corresponding SD, IQR, and range for Examples 2

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

p SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS MLE

Log 1 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19 −9.19

(MSE) 10 −6.84 −6.84 −6.91 −6.91 −6.91 −6.91 −6.91 −6.91 −6.91 −6.91 −6.91

20 −6.09 −6.09 −6.20 −6.20 −6.21 −6.21 −6.22 −6.22 −6.22 −6.22 −6.22

SD 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

IQR 1 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

10 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

20 0.05 0.05 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Range 1 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

10 0.30 0.30 0.26 0.26 0.27 0.27 0.26 0.26 0.27 0.27 0.27

20 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Note. The numerical performance is evaluated for different methods with different feature dimensions p(× 102). The
whole sample size N and local sample size n are !xed to be 106 and 2 × 104, respectively. The reported results are
averaged for R = 100 simulation replications.
MSE = mean squared error; SD = standard deviation; IQR = inter-quartile range; CR = coverage rate; BFGS = Broyden–
Fletcher–Goldfarb–Shanno; MLE = maximum likelihood estimator.

1352 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

References
Broyden C. G., Dennis Jr J. E., & Moré J. J. (1973). On the local and superlinear convergence of quasi-Newton

methods. IMA Journal of Applied Mathematics, 12(3), 223–245. https://doi.org/10.1093/imamat/12.3.223
Bubeck S. (2015). Theory of convex optimization for machine learning. Foundations and Trends in Machine

Learning, 8(3–4), 231–357. https://doi.org/10.1561/2200000050
Burden R. L., Faires J. D., & Burden A. M. (2015). Numerical analysis. Cengage Learning.
Chen W., Wang Z., & Zhou J. (2014). Large-scale L-BFGS using MapReduce. Advances in Neural Information

Processing Systems, 27. https://proceedings.neurips.cc/paper_!les/paper/2014/!le/e49b8b4053df9505e1f48
c3a701c0682-Paper.pdf

Conn A. R., Gould N. I., & Toint P. L. (1991). Convergence of quasi-Newton matrices generated by the symmet-
ric rank one update. Mathematical Programming, 50(1–3), 177–195. https://doi.org/10.1007/BF01594934

Crane R., & Roosta F. (2019). DINGO: Distributed Newton-type method for gradient-norm optimization.
Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/paper_!les/paper/
2019/!le/9718db12cae6be37f7349779007ee589-Paper.pdf

Davidon W. C. (1991). Variable metric method for minimization. SIAM Journal on Optimization, 1(1), 1–17.
https://doi.org/10.1137/0801001

Eisen M., Mokhtari A., & Ribeiro A. (2017). Decentralized quasi-Newton methods. IEEE Transactions on Signal
Processing, 65(10), 2613–2628. https://doi.org/10.1109/TSP.2017.2666776

Fan J., & Li R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of
the American statistical Association, 96(456), 1348–1360. https://doi.org/10.1198/016214501753382273

Fan J., & Lv J. (2008). Sure independence screening for ultra-high dimensional feature space (with discussion).
Journal of the Royal Statistical Society, Series B, 70(5), 849–911. https://doi.org/10.1111/j.1467-9868.
2008.00674.x

Fan J., & Song R. (2010). Sure independent screening in generalized linear models with NP-dimensionality.
Annals of Statistics, 38(6), 3567–3604. https://doi.org/10.1214/10-AOS798

Fan J., Wang D., Wang K., & Zhu Z. (2019). Distributed estimation of principal eigenspaces. Annals of Statistics,
47(6), 3009. https://doi.org/10.1214/18-AOS1713

Goldfarb D. (1970). A family of variable-metric methods derived by variational means. Mathematics of
Computation, 24(109), 23–26. https://doi.org/10.1090/S0025-5718-1970-0258249-6

Gopal S., & Yang Y. (2013). Distributed training of large-scale logistic models. In International conference on
machine learning (pp. 289–297). PMLR.

Table E7. Log(MSE) values and corresponding SD, IQR, and range for Example 2

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

n SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS MLE

Log 50 −7.30 −7.30 −7.58 −7.58 −7.60 −7.60 −7.61 −7.61 −7.61 −7.61 −7.61

(MSE) 100 −7.49 −7.49 −7.60 −7.60 −7.60 −7.60 −7.61 −7.61 −7.61 −7.61 −7.61

500 −7.60 −7.60 −7.60 −7.60 −7.61 −7.61 −7.61 −7.61 −7.61 −7.61 −7.61

SD 50 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

100 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

500 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

IQR 50 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08

100 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08

500 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08

Range 50 0.39 0.39 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.37

100 0.42 0.42 0.38 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37

500 0.39 0.39 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.37

Note. The numerical performance is evaluated for different n(× 102) and methods. The whole sample size N and feature
dimension p are !xed to N = 106 and p = 103, respectively. Finally, the reported results are averaged based on R = 100
simulations.
MSE = mean squared error; SD = standard deviation; IQR = inter-quartile range; CR = coverage rate; BFGS = Broyden–
Fletcher–Goldfarb–Shanno; MLE = maximum likelihood estimator.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4 1353
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

https://doi.org/10.1093/imamat/12.3.223
https://doi.org/10.1561/2200000050
https://proceedings.neurips.cc/paper_files/paper/2014/file/e49b8b4053df9505e1f48c3a701c0682-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/e49b8b4053df9505e1f48c3a701c0682-Paper.pdf
https://doi.org/10.1007/BF01594934
https://proceedings.neurips.cc/paper_files/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://doi.org/10.1137/0801001
https://doi.org/10.1109/TSP.2017.2666776
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1214/10-AOS798
https://doi.org/10.1214/18-AOS1713
https://doi.org/10.1090/S0025-5718-1970-0258249-6

Goyal P., Dollár P., Girshick R., Noordhuis P., Wesolowski L., Kyrola A., Tulloch A., Jia Y., & He K. (2017).
‘Accurate, large minibatch sgd: Training imagenet in 1 hr’, arXiv, arXiv:1706.02677, preprint: not peer
reviewed.

He X., Wang L., & Hong H. G. (2013). Quantile-adaptive model-free variable screening for high-dimensional
heterogeneous data. Annals of Statistics, 41(1), 342–369. https://doi.org/10.1214/13-AOS1087

Hector E. C., & Song P. X.-K. (2020). Doubly distributed supervised learning and inference with high-
dimensional correlated outcomes. Journal of Machine Learning Research, 21(173), 173-1. https://doi.org/
10.48550/arXiv.2007.08588

Hector E. C., & Song P. X.-K. (2021). A distributed and integrated method of moments for high-dimensional cor-
related data analysis. Journal of the American Statistical Association, 116(534), 805–818. https://doi.org/10.
1080/01621459.2020.1736082

Huang C., & Huo X. (2019). A distributed one-step estimator. Mathematical Programming, 174(1–2), 41–76.
https://doi.org/10.1007/s10107-019-01369-0

Jordan M. I., Lee J. D., & Yang Y. (2019). Communication-ef!cient distributed statistical inference. Journal of
the American Statistical Association, 114(526), 668–681. https://doi.org/10.1080/01621459.2018.1429274

Lee C.-P., Lim C. H., & Wright S. J. (2018). A distributed quasi-Newton algorithm for empirical risk minimiza-
tion with nonsmooth regularization. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 1646–1655). https://doi.org/10.1145/3219819.3220075

Li G., Peng H., Zhang J., & Zhu L. (2012). Robust rank correlation based screening. Annals of Statistics, 40(3),
1846–1877. https://doi.org/10.1214/12-AOS1024

Li X., Li R., Xia Z., & Xu C. (2020). Distributed feature screening via componentwise debiasing. Journal of
Machine Learning Research, 21(1), 1–32. https://dl.acm.org/doi/abs/10.5555/3455716.3455740

Lin S.-B., & Zhou D.-X. (2018). Distributed kernel-based gradient descent algorithms. Constructive
Approximation, 47(2), 249–276. https://doi.org/10.1007/s00365-017-9379-1

Mcdonald R., Mohri M., Silberman N., Walker D., & Mann G. S. (2009). Ef!cient large-scale distributed training
of conditional maximum entropy models. In Advances in neural information processing systems (pp. 1231–
1239).

Mokhtari A., Eisen M., & Ribeiro A. (2018). IQN: An incremental quasi-Newton method with local superlinear
convergence rate. SIAM Journal on Optimization, 28(2), 1670–1698. https://doi.org/10.1137/17M1122943

Nocedal J., & Wright S. J. (1999). Numerical optimization. Springer.
Qu G., & Li N. (2019). Accelerated distributed Nesterov gradient descent. IEEE Transactions on Automatic

Control, 65(6), 2566–2581. https://doi.org/10.1109/TAC.2019.2937496
Schuller G. (1974). On the order of convergence of certain quasi-Newton-methods. Numerische Mathematik,

23(2), 181–192. https://doi.org/10.1007/BF01459951
Shamir O., Srebro N., & Zhang T. (2014). Communication-ef!cient distributed optimization using an approxi-

mate newton-type method. In International conference on machine learning (pp. 1000–1008). PMLR.
Shao J. (2003). Mathematical statistics. Springer texts in statistics. Springer.
Soori S., Mishchenko K., Mokhtari A., Dehnavi M. M., & Gurbuzbalaban M. (2020). DAve-QN: A distributed

averaged quasi-Newton method with local superlinear convergence rate. In Proceedings of the twenty third
international conference on arti!cial intelligence and statistics (pp. 1965–1976). PMLR.

Su L., & Xu J. (2019). Securing distributed gradient descent in high dimensional statistical learning. Proceedings
of the ACM on Measurement and Analysis of Computing Systems, 3(1), 1–41. https://doi.org/10.1145/
3322205.3311083

Tang L., Zhou L., & Song P. X.-K. (2020). Distributed simultaneous inference in generalized linear models via
con!dence distribution. Journal of Multivariate Analysis, 176, 104567. https://doi.org/10.1016/j.jmva.
2019.104567

Van der Vaart A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge University Press.
Wang F., Zhu Y., Huang D., Qi H., & Wang H. (2021). Distributed one-step upgraded estimation for non-uni-

formly and non-randomly distributed data. Computational Statistics & Data Analysis, 162, 107265.
Wang S., Roosta F., Xu P., & Mahoney M. W. (2018). Giant: Globally improved approximate newton method

for distributed optimization. Advances in Neural Information Processing Systems, 31, 2338–2348. https://dl.
acm.org/doi/10.5555/3327144.3327160

Zhang Y., Duchi J. C., & Wainwright M. J. (2013). Communication-ef!cient algorithms for statistical optimiza-
tion. The Journal of Machine Learning Research, 14(1), 3321–3363. https://dl.acm.org/doi/10.5555/
2567709.2567769

Zhang Y., & Lin X. (2015). DiSCO: Distributed optimization for self-concordant empirical loss. In International
conference on machine learning (pp. 362–370). PMLR.

Zhu X., Li F., & Wang H. (2021). Least-square approximation for a distributed system. Journal of
Computational and Graphical Statistics, 30(4), 1–15. https://doi.org/10.1080/10618600.2021.1923517

1354 Wu et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1326/7193744 by Shanghai U
niversity of Finance and Econom

ics user on 01 O
ctober 2023

https://doi.org/10.1214/13-AOS1087
https://doi.org/10.48550/arXiv.2007.08588
https://doi.org/10.48550/arXiv.2007.08588
https://doi.org/10.1080/01621459.2020.1736082
https://doi.org/10.1080/01621459.2020.1736082
https://doi.org/10.1007/s10107-019-01369-0
https://doi.org/10.1080/01621459.2018.1429274
https://doi.org/10.1145/3219819.3220075
https://doi.org/10.1214/12-AOS1024
https://dl.acm.org/doi/abs/10.5555/3455716.3455740
https://doi.org/10.1007/s00365-017-9379-1
https://doi.org/10.1137/17M1122943
https://doi.org/10.1109/TAC.2019.2937496
https://doi.org/10.1007/BF01459951
https://doi.org/10.1145/3322205.3311083
https://doi.org/10.1145/3322205.3311083
https://doi.org/10.1016/j.jmva.2019.104567
https://doi.org/10.1016/j.jmva.2019.104567
https://dl.acm.org/doi/10.5555/3327144.3327160
https://dl.acm.org/doi/10.5555/3327144.3327160
https://dl.acm.org/doi/10.5555/2567709.2567769
https://dl.acm.org/doi/10.5555/2567709.2567769
https://doi.org/10.1080/10618600.2021.1923517

	Quasi-Newton updating for large-scale distributed learning
	Conflict of interest
	Proof of the Main Theoretical Results
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Corollary 1

	Some Useful Lemmas
	Additional Numerical Details
	C.1 Distributed K-stage SR1 algorithm
	C.2 Distributed K-stage Newton–Raphson algorithm

	Updating Method of Quasi-Newton Matrix
	Supplementary Numerical Results
	References

