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Abstract
Customer churn is one of the most important con-
cerns for large companies. Currently, massive data are
often encountered in customer churn analysis, which
bring new challenges for model computation. To cope
with these concerns, sub-sampling methods are often
used to accomplish data analysis tasks of large scale.
To cover more informative samples in one sampling
round, classic sub-sampling methods need to compute
non-uniform sampling probabilities for all data points.
However, this method creates a huge computational
burden for data sets of large scale and therefore, is
not applicable in practice. In this study, we propose a
sequential one-step (SOS) estimation method based on
repeated sub-sampling data sets. In the SOS method,
data points need to be sampled only with uniform prob-
abilities, and the sampling step is conducted repeatedly.
In each sampling step, a new estimate is computed
via one-step updating based on the newly sampled
data points. This leads to a sequence of estimates, of
which the final SOS estimate is their average. We the-
oretically show that both the bias and the standard
error of the SOS estimator can decrease with increas-
ing sub-sampling sizes or sub-sampling times. The finite
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sample SOS performances are assessed through simu-
lations. Finally, we apply this SOS method to analyse
a real large-scale customer churn data set in a securi-
ties company. The results show that the SOS method has
good interpretability and prediction power in this real
application.
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1 INTRODUCTION

Customer churn is one of the most important concerns for large companies (Ascarza et al., 2018;
Kayaalp, 2017). With increasingly fierce competition, it is important for companies to retain exist-
ing customers and prevent potential customer churn. Customer churn often refers to a situation
in which customers no longer buy or use a company’s products or services. For each customer, to
churn or not to churn is a typical binary indicator. Therefore, customer churn prediction is often
considered as a classification task, and several classifier models have been applied to address this
issue (Ahmad et al., 2019). Among the previous models, logistic regression is widely used owing
to its good interpretability (Ahn et al., 2019; Maldonado et al., 2021). Therefore, in this work, we
employ logistic regression models to handle the task of customer churn analysis.

With the arrival of the ‘Big Data’ era, massive data are often encountered in customer churn
analysis. For example, the real data analysed in this work comprise 12 million transaction records
from 230,000 customers, which take up 300 GB in total. Such large amounts of data present great
challenges for customer churn analysis. The first concern is memory constraint. The data can
be too large to be stored in a computer’s memory, and hence, have to remain stored on a hard
drive. The second challenge is computational cost. For massive data, even a simple analysis (e.g.,
mean calculation) can take a long time. These challenges create large barriers for customer churn
analysis with massive data.

To cope with these challenges, modern statistical analysis for massive data is developing fast.
Basically, there are two streams of approaches for massive data. The first stream considers storing
data in a distributed system and then applying the ‘divide-and-conquer’ strategy to accomplish
data analysis tasks of huge scales. See McDonald et al. (2009), Lee et al. (2017), Battey et al. (2018),
Jordan et al. (2019), Zhu et al. (2021), Wang et al. (2021), and the references therein. Another
stream uses sub-sampling techniques that conduct calculations on sub-samples drawn from the
whole data set to reduce both memory cost and computational cost. Important works include, but
are not limited to, Dhillon et al. (2013), Ma et al. (2015), Wang et al. (2018), Quiroz et al. (2019),
Ma et al. (2020), and Yu et al. (2020).

It is remarkable that there are big differences in the two streams of approaches. The distributed
methods usually require typical equipment support. For example, a distributed system is often
required, which consists of one central computer served as Master and all other computers served
as Workers. Then, the goal of distributed methods is to obtain an estimator based on the whole
sample. However, the sub-sampling methods can be conducted using one single computer. They
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focus on the approximation of the whole sample estimator based on sub-samples with limited
resources. In this customer churn application, we do not have equipment support for distributed
analysis. Therefore, in this work, we focus on sub-sampling methods to handle the customer
churn analysis with massive data.

Classic sub-sampling methods require only one round of data sampling. To cover more infor-
mative samples in the single sampling round, non-uniform sampling probabilities are often
specified for each data point, so that more informative data points can be sampled with higher
probabilities. Typical approaches include leverage score-based sub-sampling (Drineas et al., 2011;
Ma et al., 2015; Ma & Sun, 2015), information-based optimal sub-data selection (Wang et al., 2019),
the optimal Poisson sampling method, and its distributed implementation (Wang et al., 2021),
among others. These sub-sampling estimators have been proved to be consistent and asymp-
totically normal under appropriate regularity conditions; see Ma et al. (2020) for an impor-
tant example. However, for these non-uniform sub-sampling methods, the step of evaluating
non-uniform sampling probabilities for the whole data set would create a huge computational
burden. For example, Wang et al. (2018) proposed optimal sub-sampling methods motivated
by the A-optimality criterion (OSMAC) for large sample logistic regression. To find the opti-
mal sub-sampling probabilities in the OSMAC method, the computational complexity is O(Nd)
for a data set with N observations and d-dimensional covariates. Consequently, this optimal
sub-sampling algorithm could be computationally very expensive when N is very large. In the cus-
tomer churn application, the whole data size is about 12 million. It would not be computationally
feasible for the previous sub-sampling methods to handle this task.

An obvious way to address this problem would be to sample sub-data with uniform probabil-
ities while operating the sub-sampling step repeatedly. By sampling with uniform probabilities,
we are free from computing probabilities for the whole data set in advance, which can largely alle-
viate the computational burden. By sampling repeatedly, the sampled data would be close to the
whole data set. In an ideal situation, if we were to conduct sub-sampling without replacement,
then sampling N∕n times would cover the whole data set, where N and n are the sizes of the whole
data and sub-data, respectively. It is as if the whole data were stored in a distributed system.

The sub-sampling cost cannot be negligible, especially for repeated sub-sampling methods. It
is remarkable that the time needed to sample one data point from the hard drive mainly consists
of two parts. The first is the addressing cost, which is the time taken to identify the target data point
on the hard drive. The second is the I/O cost, which is the time needed to read the target data point
into the computer memory. Both are hard drive sampling costs, which cannot be ignored when
we apply sub-sampling methods to massive data sets. Therefore, inspired by Pan et al. (2020), we
adopt the sequential addressing sampling method to reduce the hard drive sampling cost. When
data are randomly distributed on a hard drive, for each sub-data, only one starting point is selected
and the other data points can be obtained sequentially from the starting point. In this way, the
addressing cost can be reduced substantially for sub-sampling methods.

Based on the repeated sub-sampling data sets from the whole customer churn data, it is
worthwhile to consider how to obtain an efficient customer churn estimation for both statistical
property and computational cost. To this end, we propose a sequential one-step (SOS) method,
whose estimation bias and variance can both be reduced by increasing the total sub-sampling
times K. Specifically, in the first sub-sampling step, we can obtain an estimate ̂

𝛽1 based on the
first sub-data using, for example, the traditional Newton–Raphson algorithm. Then, in the sec-
ond sub-sampling step, we regard ̂

𝛽1 as the initial value, and conduct only one-step updating
based on the second sub-data. This leads to ̂

𝛽2. In the next step, the average of the first two esti-
mates, that is, 𝛽2 = ( ̂𝛽1 + ̂

𝛽2)∕2, is regarded as the initial value, and one-step updating based on
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the third sub-data is conducted again to obtain ̂

𝛽3. In summary, in the (k+1)th step, the average of
all previous estimates

(
i.e., 𝛽k =

∑k
l=1

̂

𝛽 l
)

serves as the initial value, and one-step updating based
on the newly sampled sub-data is conducted to obtain the estimate ̂

𝛽k+1. The final estimate of K
sub-sampling steps is the average of all estimates, that is, ̂

𝛽

SOS =
∑K

k=1
̂

𝛽k∕K.
It is noteworthy that, except for the first sub-sampling step, SOS requires only one round of

updating in the subsequent sub-sampling steps. Therefore, it is computationally efficient. We also
establish theoretical properties of the SOS estimator. We prove that both the bias and variance of
the SOS estimator can be reduced as the sampling times K increase. We conduct extensive numer-
ical studies based on simulated data sets to verify our theoretical findings. Finally, the SOS method
is applied to the customer churn data set in a securities company to demonstrate its application.

The rest of this article is organised as follows. Section 2 introduces the SOS method. Section 3
presents simulation analysis to demonstrate the finite sample performance of the SOS estimators.
Section 4 presents a real application for customer churn analysis using the SOS method. Section 5
concludes with a brief discussion.

2 SOS ESTIMATOR BY SUB-SAMPLING

2.1 Basic notations

Assume we have all the sample observations,  = {1, 2, · · · ,N}, where N is defined as the whole
sample size. Define (Yi,Xi) to be the observation collected from the ith (1 ≤ i ≤ N) observation,
where Yi ∈ R1 is the response and Xi ∈ Rp is the associated predictor. Conditional on Xi, assume
that Yi is independently and identically distributed with density function f (Zi; 𝛽), where Zi =
(Yi,Xi), 𝛽 ∈ Θ is the unknown parameter, and Θ is an open subset in Rd. We assume p = d for
convenience. To estimate the unknown parameter 𝛽, the log-likelihood function can be spelled
out as

𝓁(𝛽) =
∑

i∈
𝓁(Zi; 𝛽),

where 𝓁(⋅; 𝛽) = log f (⋅; 𝛽) is the log-likelihood function. For convenience, we use 𝓁(𝛽) to denote
𝓁(Zi; 𝛽) hereafter.

Note that when N is quite large, the whole data set is often kept on a hard drive, and can-
not be read into the memory as a whole. Then it would be time consuming to select a sample
randomly from the hard drive into the computer memory. To save time, we apply the sequential
addressing sub-sampling (SAS) method (Pan et al., 2020) to conduct the sub-sampling directly
on hard drive, not memory. To apply the SAS method, the whole data should be randomly dis-
tributed on the hard drive. Otherwise, a shuffle operator would be needed to make data randomly
distributed. The detailed implementation process of conducting shuffle operation can be found
in Appendix A in Data S1. Then, the sub-sampling steps can be performed iteratively based
on the randomly distributed data to obtain sub-samples. Next, we describe the SAS method in
detail.

First, one data point should be randomly selected on the hard drive as a starting point, that is,
m (1 ≤ m ≤ N − n + 1), where n is the desired sub-data size. This yields marginal addressing cost,
as only one data point is chosen. Second, with a fixed starting point, the sub-sample with size n is
selected sequentially with index {m,m + 1, · · · ,m + n − 1} ∈  . These selected sub-samples are
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collected as m = {(Xm,Ym), · · · (Xm+n−1,Ym+n−1)}. Except for the first starting point indexed by
m, the remaining data points are sampled sequentially. Therefore, no additional addressing cost
is required, and the total sampling cost can be reduced substantially.

It is notable that, although the SAS method serves as a preparing step for the SOS method,
there are fundamental differences between SAS and SOS. The SAS method is actually a
sub-sampling technique, which can sample data directly from the hard drive and save much
addressing cost. Based on the SAS sub-samples, Pan et al. (2020) also study the theoretical prop-
erties of some basic statistics estimators (e.g., sample mean). However in SOS, we focus on the
estimation problem of logistic regression and discuss updating strategy to exploit the sub-samples
obtained by SAS. It is remarkable that, the SAS method only serves as a tool for fast sampling, and
the theoretical properties of the SOS estimator could still be guaranteed without this sampling
step.

2.2 SOS estimator

Assume the whole data set is randomly distributed on the hard drive. Then, the SAS method
can be applied for fast sub-sampling. Recall that the sub-sample size is n. By the SAS method,
a total of M = N − n + 1 different sequential sub-samples can be generated. Assuming that the
sub-sampling is repeated K times, in the kth (1 ≤ k ≤ K) sub-sampling, the sub-sample (k) ∈
{1, · · · , M} can be selected with replacement. We further denote k as the indexes of data points
in (k). Based on k with 1 ≤ k ≤ K, we propose the SOS method for efficient estimation of 𝛽.

To obtain the SOS estimator, an initial estimator 𝛽1 is first calculated based on one of the SAS
sub-samples with the index set denoted as 1. For example, it may be a maximum likelihood esti-
mator (MLE). Then, in the (k+1)th sub-sampling step with 1 ≤ k ≤ K − 1, a new SAS sub-sample
can be obtained as (k+1). Based on the (k+1)th sub-sample, we conduct the following two steps
iteratively to obtain the SOS estimator. The details of the SOS method are shown in Algorithm 1.
Recall we have assumed that, the whole data are already shuffled or randomly distributed before
we begin the SOS procedure.

Step 1: One-step update. Assume that the initial estimator in this step is 𝛽k. Then, we conduct
one-step updating based on 𝛽k to obtain the one-step updated estimator ̂

𝛽k+1 in this step, that is,

̂

𝛽k+1 = 𝛽k −
{
̈𝓁k+1(𝛽k)

}−1
̇𝓁k+1(𝛽k), (1)

where ̇𝓁k+1(𝛽k) and ̈𝓁k+1(𝛽k) are the first- and second-order derivatives of the likelihood function
based on the kth sub-sample, respectively.

Step 2: Average. The SOS sub-sampling estimator for the (k+1)th step can be calculated as

𝛽k+1 =
1

k + 1

{
k𝛽k + ̂

𝛽k+1

}
= 1

k + 1

k+1∑

l=1

̂

𝛽 l.

Conduct Steps 1 and 2 iteratively. The estimator obtained in the Kth step is the final SOS estimator,
that is, ̂

𝛽

SOS = 𝛽K . See Figure 1 for an illustration of calculating the SOS estimator based on the
SAS sub-sampling method.
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Algorithm 1. SOS estimation algorithm

STEP 1: Compute the initial estimator
1. Randomly select m1 from {1, · · · ,N} and obtain the SAS sub-sample with index set
1, where the predictors and responses are denoted by (1).

2. Conduct MLE based on the sample with index1 to obtain ̂

𝛽1. Further define ̄

𝛽1 = ̂

𝛽1.
STEP 2: Compute the SOS estimate

1. for k = 1, ...,K − 1 do:
(1) Randomly select mk+1 from {1, · · · ,N}, and obtain the SAS sub-sample with

index set k+1, where the predictors and responses are denoted by (k+1).
(2) Compute ̂

𝛽k+1 with the one-step update as

̂

𝛽k+1 = ̄

𝛽k −
{
̈𝓁k+1( ̄𝛽k)

}−1
̇𝓁k+1 ( ̄𝛽k),

(3) Calculate the sequential estimator in the (k+1)th step as

̄

𝛽k+1 =
1

k + 1
{

k ̄

𝛽k + ̂

𝛽k+1
}
.

2. The final SOS estimate is ̂

𝛽

SOS = ̄

𝛽K .

F I G U R E 1 Illustration of the sequential one-step estimator based on random addressing sub-sampling

Remark: We offer two remarks here about the SOS estimator. First, for each sub-sample, only the
one-step update is conducted by (1). This may yield marginal computational cost because (1) the
sample size n is relatively small; and (2) no Newton–Raphson-type iterations are involved. It is
notable that, there is no need to achieve fully Newton–Raphson convergence for each sub-sample.
This is because the Newton–Raphson algorithm is not affected by the initial value when it goes to
convergence. Therefore, if the sub-sample estimator ̂

𝛽k+1 is not one-step updating, but obtained
with fully Newton–Raphson convergence, then the initial value 𝛽k would not affect the resulting
estimator in the (k+1)th sub-sample. Consequently, the SOS estimator degenerates to the one-shot
(OS) estimator, which we theoretically compare in the next sub-section. Second, each 𝛽k can be
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viewed as the average of the one-step estimator in form (1) for the first k steps. This leads to some
nice properties: (1) a total of K sub-samples are used in the estimation; and (2) the standard error
of the final estimator can be reduced by averaging. More weighting schemes could be considered
in the SOS updating strategy; see the weighting scheme in the aggregated estimating equation
(AEE) method (Lin & Xi, 2011) for an example.

It is also notable that, our proposed SOS method is an extension of the classical one-step esti-
mator (Shao, 2003; Zou & Li, 2008) in the field of sub-sampling. For example, Zhu et al. (2021)
has developed a distributed least squares approximation (DLSA) method to solve regression prob-
lems on distributed systems. In the DLSA method, once the weighted least squares estimator
(WLSE) is obtained by the Master, it would be broadcast to all Workers. Then each Worker
would perform a one-step iteration using the WLSE as the initial value to obtain a new esti-
mator. Another work is Wang et al. (2021), who propose a one-step upgraded pilot method
for non-uniformly and non-randomly distributed data. However, both the two methods are
divide-and-conquer (DC) type methods, which are quite different from the sub-sampling meth-
ods. For example, one typical difference is that, in DC methods, the estimators from different
Workers can be regarded as independent. However, in our SOS method, the estimators 𝛽1 to 𝛽K
are sequentially obtained, which makes them dependent with each other. This leads to challenges
in investigation of the asymptotic theory for the SOS estimator. More differences between the
divide-and-conquer type methods and sub-sampling methods can be found in the Appendix B in
Data S1.

2.3 Theoretical properties of the SOS estimator

We further investigate the properties of the SOS estimator in this subsection. To establish the
theoretical properties of the SOS estimator, assume that Θ is an open subset in the Euclidean
space, and we have the following conditions.

(C1) The sub-sample size n, the whole sample size N, and the sub-sampling steps K satisfy that
as n →∞, n∕N → 0, K → ∞, and log K = o(n).

(C2) Assume that the first- and second-order derivatives of log-likelihood 𝓁(𝛽) satisfy equations
E
{
𝜕𝓁(𝛽)∕(𝜕𝛽j)

}
= 0, and −E

{
𝜕

2𝓁(𝛽)∕(𝜕𝛽j1𝜕𝛽j2)
}
= E

[{
𝜕𝓁(𝛽)∕𝜕𝛽j1

} {
𝜕𝓁(𝛽)∕𝜕𝛽j2

}]
, for

1 ≤ j, j1, j2 ≤ p.
(C3) Assume that E

[
𝜕𝓁i(𝛽)∕𝜕𝛽{𝜕𝓁i(𝛽)∕𝜕𝛽}⊤

]
= Σ−1 is finite and positive definite at 𝛽 = 𝛽0,

where 𝛽0 is the true parameter.
(C4) There is an open subset 𝜔 of Θ that contains the true parameter 𝛽0, such that for all Zis,

𝜕

3f (Zi, 𝛽)∕(𝜕𝛽j1𝜕𝛽j2𝜕𝛽j3) exists for all 𝛽 ∈ 𝜔, and 1 ≤ j, j1, j2, j3 ≤ p. Moreover, assume func-
tion M(⋅) exists, such that for any 𝛽 ∈ Θ, we have EM(Yi) < C, where C is a constant. For
𝛽 ∈ 𝜔 and 1 ≤ j, j1, j2, j3 ≤ p, we have ||𝜕𝓁(Yi, 𝛽)∕(𝜕𝛽j1𝜕𝛽j2𝜕𝛽j3 )|| ≤ M(Yi).

(C5) Assume the covariates Xijs independently follow Gaussian distributions.

Condition (C1) restricts the relationships of (n,K) and (n,N). By the condition, we know
that the sub-sampling times K should not grow too fast in the sense that log K = o(n), and
the sub-sampling size n should not increase too fast in the sense that n∕N → 0. Conditions
(C2)–(C4) are standard regularity conditions. They are commonly adopted to guarantee asymp-
totic normality of the ordinary maximum likelihood estimates; see, for example, Lehmann and
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Casella (1998) and Fan and Li (2001). Condition (C5) is a classical assumption on covariates
(Wang, 2009).

With the conditions satisfied, we can establish the properties of ̂

𝛽

SOS, which equals 𝛽K . Define
U(k) =

{
n−1

̈𝓁k (𝛽0)
}−1 {n−1

̇𝓁k (𝛽0)
}

, and ̄UK = K−1∑K
k=1U(k). Then, the following theorem holds.

Theorem 1. Assume conditions (C1)–(C5) hold. Then, we have (1) 𝛽K − 𝛽0 = − ̄UK + Δ, with
E ̄UK = 0, var( ̄UK) = {1∕(nK) + 1∕N} Σ{1 + o(1)},andΔ=Op

[
(log K∕n){1∕(nK)+1∕N}

]1∕2.
(2) {1∕(nK) + 1∕N}−1∕2(𝛽K − 𝛽0) →d N(0,Σ).

The proof of Theorem 1 is in Appendix B.1. As shown in Theorem 1, we separate the difference
between the SOS estimator 𝛽K and the true parameter 𝛽0 into two parts, the bias term and vari-
ance term. One could note that the bias term Δ and variance term var(𝛽K) are both determined
by two main parts. The first part is related to the whole sample size N. This part cannot disappear
by using the SOS procedure. The second term is (nK)−1, which is affected by the SOS procedure
and can decrease with larger K or n. In addition, the SOS estimator satisfies asymptotic normal-
ity with asymptotic variance {1∕(nK) + 1∕N}−1Σ. In particular, when nK is much larger than
N, it could achieve the same statistical efficiency as the global estimator. Note that the practi-
cal demand for estimation precision is usually limited. On the contrary, the budget for sampling
cost is very valuable. Then, it may be more appealing to sacrifice the statistical efficiency to some
extent for lower sampling cost. Therefore, in practice, we often expect the SOS method to be imple-
mented with reasonably large n and K (i.e., nK ≪ N) as long as the desired statistical precision is
achieved.

For theoretical comparison, we introduce a simple alternative method. For each sub-sample
k, we separately compute the MLE ̂

𝛽k,mle. Then, all sub-sample estimators are simply averaged
to obtain the OS estimator. Let 𝛽

OS
K = K−1∑K

k=1
̂

𝛽k,mle denote the OS estimator. We obtain the
following conclusion.

Proposition 1. For the OS estimator, under the same conditions in Theorem 1, we have 𝛽

OS
K − 𝛽0

= − ̄UK + Δos, where Δos = Op(1∕n). Further assume n2∕N →∞; then, we have
{1∕(nK) + 1∕N}−1∕2(𝛽

OS
K − 𝛽0) →d N(0,Σ).

The proof of Proposition 1 is in Appendix B.2. Comparing Theorem 1 and Proposition 1, we
find that the leading terms for the variance of both the SOS and the OS estimators are identical.
However, the bias term of the OS estimator is of order Op(1∕n), which cannot be improved as K
increases. By contrast, the bias of the SOS estimator is Op

[
(log K∕n){1∕(nK) + 1∕N}

]1∕2, which
can be significantly reduced as K increases. Therefore, compared with the SOS estimator 𝛽K ,
𝛽

OS
K requires a more stringent condition n2∕N →∞, such that it could achieve the same asymp-

totic normality as the global estimator (Huang & Huo, 2019; Jordan et al., 2019). However, this
condition is not necessary for the SOS estimator.

Next, to make an automatic inference, we discuss the estimation of the standard error
of the SOS estimator. Specifically, based on the SOS procedure, we construct the following
statistic as

̂SE
2
(𝛽K) =

n
K − 1

( 1
nK

+ 1
N

) K∑

k=1

(
U(k) − ̄UK

) (
U(k) − ̄UK

)
⊤

. (2)

The properties of ̂SE
2
(𝛽K) are presented in the following theorem.
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Theorem 2. Under the same conditions in Theorem 1, we have

E
{
̂SE

2
(𝛽K)

}
= Σ

( 1
nK

+ 1
N

)
{1 + o(1)}

var(𝛽K) − E
{
̂SE

2
(𝛽K)

}
= O

( n
N2

)

The proof of Theorem 2 is in Appendix B.3. We conclude that the leading orders of var(𝛽K) and
̂SE

2
(𝛽K) are the same. However, as an estimator of var(𝛽K), ̂SE

2
(𝛽K) is biassed, but the order of

the bias is O(nN−2), which decreases as N increases or n decreases. Practically, the unknown
parameter 𝛽0 in U(k) can be replaced by 𝛽k to obtain Û(k) and ̂

̄UK = K−1∑K
k=1Û(k). Then, ̂SE

2
∗(𝛽K)

can be calculated based on Û(k) and ̂
̄UK in the form of (2). Note that by Theorem 1, the lead-

ing term for the variance of 𝛽K is {1∕(nK) + 1∕N} Σ. Such term can be consistently estimated
by the proposed SE estimator ̂SE∗(𝛽K). Its asymptotic property is presented in the following
theorem.

Theorem 3. Under the same conditions in Theorem 1, we have

( 1
nK

+ 1
N

)−1
̂SE

2
∗(𝛽K) →p Σ. (3)

The proof of Theorem 3 is in Appendix B.4. Combining the results of Theorems 1 and 3, we

immediately obtain that
{
̂SE∗(𝛽K)

}−1
(𝛽K − 𝛽0) →d N(0, Ip). As a result, both the estimator and

statistical inference could be easily and efficiently derived by our SOS procedure. We illustrate
the performance of the SOS estimator and ̂SE

2
∗(𝛽K) in the next section.

3 SIMULATION STUDIES

3.1 Simulation design

To demonstrate the finite sample performance of the SOS estimator, we present a variety of simu-
lation studies. Assume that the whole data set contains N = 150, 000 observations. For i = 1, ...,N,
we generate each observation (Xi,Yi) under the logistic regression model. We choose the logistic
regression model because it is a specific model used for customer churn analysis. Given that the
SOS method can be extended easily to other generalised regression models, we also choose the
Poisson regression model as an example to test the effectiveness of the SOS method. The specific
settings for the two model examples are as follows.

Example 1 (Logistic regression). Logistic regression is used to model binary responses. In this
example, we consider p = 5 exogenous covariates Xi = (Xi1,Xi2,Xi3,Xi4,Xi5)⊤, where each
covariate is generated from a standard normal distribution N(0, 1). We set the coefficients
for Xi as 𝛽 = (0,−0.2,−0.1, 0.1, 0.2)⊤. Then, the response Yi(1 ≤ i ≤ N) is generated from a
Bernoulli distribution with the probability given as

P(Yi = 1|Xi, 𝛽) =
exp

(
X⊤

i 𝛽
)

1 + exp
(

X⊤

i 𝛽
) .
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Example 2 (Poisson regression). Poisson regression is used to deal with count responses. We also
consider p = 5 exogenous covariates, which are all generated from standard normal distri-
bution. The corresponding coefficients are set as 𝛽 = (−3,−2,−1, 1, 2)⊤. Then, the response
Yi (1 ≤ i ≤ N) is generated from a Poisson distribution given as

P(Yi|Xi, 𝛽) =
𝜆

Yi
i

Yi!
exp(𝜆i),where 𝜆i = exp

(
X⊤

i 𝛽
)
.

After obtaining N observations, we consider combinations of different sub-sampling size
and different sub-sampling times. In both logistic and Poisson regression examples, we set
n = (100, 200, 400). Then in the logistic regression example, we consider cases of small K, and set
K = (10, 20, 30, 40, 50, 100). In the Poisson regression example, we consider cases of big K, and
set K = (100, 200, 300, 400, 500, 1000). In each combination of n and K, we repeat the experiment
B = 1000 times.

3.2 Comparison with repeated sub-sampling methods

In this sub-section, we compare the proposed SOS estimator with the OS estimator, which is rep-
resentative of the repeated sub-sampling methods. Specifically, in each simulated data set, we
obtain the SOS estimator using Algorithm 1. For the OS estimator, we first randomly obtain K
sub-data, and then independently apply the Newton–Raphson method to each sub-data. Specif-
ically, in the kth sub-data, we set the initial value as 𝛽ini = (0, 0, 0, 0, 0)⊤, and then fully conduct
the Newton–Raphson method to obtain estimate ̂

𝛽k,mle. The final OS estimator is calculated as
𝛽

OS
K =

∑K
k=1

̂

𝛽k,mle∕K. For one particular method (i.e., SOS and OS), we define ̂

𝛽

(b) =
(
̂

𝛽

(b)
j
)p

j=1 as
the estimator in the bth (1 ≤ b ≤ B) replication. Then, to evaluate the estimation efficiency of
each estimator, we calculate the bias as ♭ = |𝛽 − 𝛽|, where 𝛽 = B−1 ∑

b
̂

𝛽

(b). The standard error
(
̂SE

(b))
can be estimated based on Theorem 2 for the SOS method. We report the average ̂SE =

B−1 ∑
b
̂SE

(b)
. Then, we compare ̂SE with the Monte Carlo SD of ̂

𝛽

(b), which is calculated by
SE =

{
B−1 ∑

b ( ̂𝛽
(b) − 𝛽)2

}1∕2. Next, we construct a 95% confidence interval for 𝛽 as CI(b) =
(
̂

𝛽

(b) −

z0.975̂SE
(b)
,

̂

𝛽

(b) + z0.975̂SE
(b))

, where z
𝛼

is the 𝛼th lower quantile of a standard normal distribution.
Then, the coverage probability is computed as ECP = B−1 ∑

b I
(
𝛽 ∈ CI(b)

)
, where I(⋅) is the indica-

tor function. Last, we compare the computational efficiency of the two methods. It is notable that,
for a fixed sample size n, the computational time consumed by each Newton–Raphson iteration is
the same for the SOS and OS methods. Therefore, we use the average round of Newton–Raphson
iterations to compare the computational efficiency of the SOS and OS methods.

Tables 1 and 2 present the simulation results for estimation performance under the logis-
tic regression and Poisson regression, respectively. In general, the simulation results under the
two examples are similar. We draw the following conclusions. First, as the sub-sampling times
K increases, the bias of the SOS estimator becomes much smaller than that of the OS estima-
tor. This is because the bias of the SOS estimator decreases with increasing K, while the bias
of the OS estimator is always O(1∕n). Second, the SE and ̂SE of both estimators decrease with
increasing n or K, implying that the two estimators are consistent. Third, as the bias and SE
of the SOS estimator can decrease with n and K, the bias always behaves negligibly compared
with SE. However, the bias of the OS estimator is comparable to or even larger than its SE; see
n = 100,K = 300 in Table 2 for an example. Next, the empirical coverage probabilities of the SOS
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T A B L E 1 Simulation results for estimation performance under logistic regression

Bias× 100 SE× 100 ̂SE × 100 ECP ROUND

K SOS OS SOS OS SOS OS SOS OS SOS OS

n = 100

10 0.532 0.903 6.598 7.237 6.545 6.596 0.952 0.912 1.875 7.145

20 0.336 0.963 4.694 5.109 4.687 4.717 0.947 0.879 1.923 7.492

30 0.204 0.943 3.815 4.142 3.857 3.88 0.950 0.858 1.884 7.146

40 0.170 0.976 3.278 3.559 3.359 3.379 0.950 0.858 1.821 7.240

50 0.150 0.915 2.997 3.247 3.015 3.032 0.954 0.823 2.122 7.654

100 0.058 0.921 2.124 2.293 2.162 2.173 0.955 0.755 1.942 7.149

n = 200

10 0.291 0.545 4.709 4.923 4.539 4.554 0.946 0.927 1.873 7.364

20 0.160 0.479 3.233 3.374 3.283 3.293 0.952 0.919 1.917 7.381

30 0.098 0.420 2.682 2.793 2.707 2.714 0.950 0.912 1.921 7.399

40 0.065 0.453 2.328 2.422 2.363 2.370 0.954 0.906 1.893 7.416

50 0.043 0.438 2.080 2.161 2.125 2.130 0.951 0.904 1.834 7.433

100 0.041 0.448 1.550 1.609 1.553 1.556 0.948 0.882 1.985 7.450

n = 400

10 0.119 0.245 3.198 3.269 3.200 3.205 0.950 0.938 1.881 7.467

20 0.055 0.239 2.285 2.331 2.322 2.325 0.952 0.938 1.954 7.484

30 0.046 0.224 1.891 1.926 1.926 1.928 0.951 0.936 2.016 7.501

40 0.035 0.218 1.681 1.714 1.689 1.692 0.949 0.934 1.982 7.519

50 0.031 0.226 1.529 1.558 1.532 1.534 0.947 0.929 2.104 7.536

100 0.020 0.237 1.148 1.170 1.150 1.151 0.947 0.912 2.163 7.553

Notes: The bias, SE, ̂SE, and ECP are reported for the sequential one-step (SOS) and one-shot (OS) estimators, respectively.
The average Newton–Raphson rounds (representing the computational time) of the two estimators are also reported.

estimator are all around the nominal level of 95%, which suggests that the true SE can be well
approximated by its estimators derived in Theorem 2. However, the empirical coverage probabil-
ities of the OS estimator show a deceasing trend when enlarging K. This is because the bias of
the OS estimator cannot be negligible when K is large. Last, regarding the computational time,
we compare the average rounds of Newton–Raphson iterations consumed by the two methods.
Except for the initial sub-sample estimator, the SOS method uses only one Newton–Raphson
update for each subsequent sub-sample. However, on average, the OS estimator requires seven or
eight rounds of Newton–Raphson updates to obtain convergence. Therefore, the SOS estimator is
computationally more efficient than the OS estimator.

3.3 Comparison with non-uniform sub-sampling methods

In this sub-section, we compare the proposed SOS method with the non-uniform sub-sampling
methods. To this end, we choose the OSMAC method (Wang et al., 2018) for the comparison,
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T A B L E 2 Simulation results for estimation performance under Poisson regression

Bias ×100 SE×100 ̂SE × 100 ECP ROUND

K SOS OS SOS OS SOS OS SOS OS SOS OS

n = 100

100 0.063 3.656 3.237 3.437 3.237 3.505 0.951 0.820 1.892 8.669

200 0.042 3.649 2.329 2.478 2.365 2.555 0.951 0.711 1.934 8.673

300 0.035 3.594 1.947 2.085 1.989 2.148 0.955 0.634 1.910 8.671

400 0.033 3.599 1.720 1.839 1.770 1.910 0.959 0.571 1.907 8.671

500 0.031 3.597 1.564 1.667 1.625 1.754 0.959 0.524 1.907 8.671

1000 0.033 3.593 1.222 1.294 1.286 1.387 0.960 0.426 1.893 8.670

n = 200

100 0.039 1.275 2.096 2.138 2.103 2.167 0.950 0.912 1.884 8.326

200 0.034 1.241 1.555 1.584 1.575 1.622 0.957 0.879 1.892 8.323

300 0.030 1.234 1.315 1.337 1.353 1.393 0.958 0.856 1.927 8.322

400 0.026 1.241 1.194 1.214 1.226 1.262 0.961 0.834 1.962 8.323

500 0.026 1.241 1.115 1.135 1.143 1.176 0.960 0.816 2.043 8.322

1000 0.023 1.239 0.923 0.936 0.956 0.984 0.958 0.765 1.895 8.321

n = 400

100 0.038 0.485 1.466 1.476 1.470 1.489 0.947 0.932 1.884 8.153

200 0.035 0.485 1.131 1.137 1.145 1.160 0.956 0.932 1.892 8.153

300 0.032 0.498 1.006 1.012 1.013 1.026 0.953 0.920 1.903 8.153

400 0.034 0.485 0.935 0.939 0.940 0.952 0.951 0.915 1.906 8.153

500 0.032 0.488 0.882 0.886 0.894 0.905 0.953 0.917 1.891 8.152

1000 0.026 0.486 0.769 0.772 0.792 0.802 0.954 0.910 1.902 8.152

Notes: The bias, SE, ̂SE, and ECP are reported for the sequential one-step (SOS) and one-shot (OS) estimators, respectively. The
average Newton–Raphson rounds (representing the computational time) of the two estimators are also reported.

which is particularly designed for large sample logistic regression. The OSMAC method applies
a two-step algorithm for the model estimation. In the first step, a pilot sample of size r0 is ran-
domly chosen to obtain a pilot estimate. Then, the pilot estimate is used to compute the optimal
sub-sampling probabilities for the whole data. In the second step, a new sub-sample of size r
is chosen based on the optimal sub-sampling probabilities. Then, the final OSMAC estimate is
obtained using the total r0 + r samples. We compare the two methods under the logistic regres-
sion example. To mimic a large data set, we consider the whole sample size N = (1, 2, 5, 10) × 105.
For fixed N, the whole data set is generated under the logistic regression model following the
procedures in Section 3.1.

Below, we compare the SOS method and OSMAC method under one specific situation. That is,
the compute memory is limited, which could only support building a logistic regression model for
a sample with size n = 400. In this situation, the sub-sample size used in SOS is fixed as n = 400,
and we vary the sub-sampling times as K = (1, 5, 10, 20, 40). As for the OSMAC method, we set
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T A B L E 3 The mean squared error (MSE) and time costs (in seconds) are obtained by the sequential
one-step (SOS) and optimal sub-sampling methods motivated by the A-optimality criterion (OSMAC) methods
for different sample sizes N under the logistic regression model.

MSE Time MSE Time MSE Time MSE Time

Method N = 100, 000 N = 200, 000 N = 400, 000 N = 800, 000

OSMAC 0.0460 0.0213 0.0460 0.0410 0.0452 0.0875 0.0476 0.1679

SOS K = 1 0.2346 0.0058 0.2320 0.0070 0.2300 0.0064 0.2274 0.0086

K = 5 0.0415 0.0101 0.0419 0.0090 0.0414 0.0124 0.0418 0.0150

K = 10 0.0410 0.0171 0.0405 0.0168 0.0419 0.0175 0.0406 0.0256

K = 20 0.0404 0.0318 0.0409 0.0322 0.0405 0.0378 0.0403 0.0437

K = 40 0.0401 0.0574 0.0398 0.0618 0.0400 0.0740 0.0400 0.0804

r0 = 200 and r = 400. The OSMAC method is implemented using the corresponding R package
provided by Wang et al. (2018).

For a reliable comparison, the experiment is randomly replicated for B = 200 times for each
experimental setup. We use the mean squared error (MSE) to evaluate the statistical efficiencies
of the two methods. Specifically, for one particular method (i.e., SOS and OSMAC), we define
̂

𝛽

(b) =
(
̂

𝛽

(b)
j
)p

j=1 as the estimator in the bth (1 ≤ b ≤ B) replication. Then, the MSE of each estima-

tor is computed as B−1∑B
b=1

∑p
j=1

(
̂

𝛽

(b)
j − 𝛽j

)2. We also compare the computational time of the two
methods. All experiments are conducted on a server with 12× Xeon Gold 6271 CPU and 64 GB
RAM. The total time costs consumed by different methods under each experimental setup are
averaged over B = 200 random replications. The detailed results are displayed in Table 3.

Based on the results presented in Table 3, we draw the following conclusions. First, the
OSMAC method achieves better estimation performance than the SOS method with K = 1. This
is because the OSMAC method can find an optimal sub-sample, while the SOS method only ran-
domly selects the sub-sample. Second, as the sub-sampling times K increases, the estimation
performance of the SOS method improves by achieving smaller MSE values. This finding is con-
sistent with our theoretical results in Theorem 1. It is also notable that a relatively small K (e.g.,
K = 5) makes the SOS method achieve better estimation performance than the OSMAC method.
Third, the computational time consumed by the OSMAC method increases largely with the whole
sample size N. This is because the OSMAC method computes the sub-sampling probabilities for
all N samples, which results in a large computational cost. Meanwhile, the computational cost of
the SOS method mainly results from the repeated sub-sampling strategy. Then, with an increase
of K, the computational time consumed by SOS is enlarged. However, with appropriately chosen
K, the SOS method can achieve both better estimation performance and smaller computational
time than the OSMAC method.

3.4 Comparison with all-sample methods

Finally, to complete our empirical comparison, we compare the SOS method with methods using
the whole sample. We first compare the SOS method with DC methods, which are also com-
monly used to accomplish data analysis tasks of huge scale. The key idea of DC methods is to
divide a large-scale data set into multiple sub-data sets, each of which is then estimated separately
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to obtain a local estimate. Then, all local estimates are reassembled together to obtain the final
estimate. Different from sub-sampling methods, DC methods in fact exploit the whole data infor-
mation. Therefore, they often have good statistical efficiency but high computational cost. In this
regard, we take the AEE method (Lin & Xi, 2011) as a representative example. Another method
to consider is the mini-batch gradient descent (MGD) estimation method (Duchi et al., 2011).
The MGD method splits the whole data set into several mini-batches. Each mini-batch is then
read into the memory and estimated sequentially. Different from the SOS method, MGD is not
a Newton–Raphson-type method. Instead, it applies the stochastic gradient descent strategy for
parameter estimation.

To undertake a comprehensive evaluation, we consider the whole sample size as N =
(10, 12, 14, 16, 18, 20) × 104. For fixed N, we generate the data set under the logistic regression
model following the procedures described in Section 3.1. For the AEE method, we assume there
are a total of J = 100 workers. For the MGD method, we assume the total number of mini-batches
is also J = 100. Then, the whole data set is randomly and evenly divided into J = 100 sub-data
sets, and each sub-data set has n = N∕J observations. For comparison, the sub-sample size in the
SOS method is fixed as n = N∕J. For all experiments, we assume sub-sampling times of K = 50.
Theoretically, the information exploited by the SOS method is smaller than the DC methods. We
repeat the experiment B = 200 times under each experimental setup. The statistical efficiencies
of the three methods are evaluated by MSE. We also compare the computational efficiency of the
three methods. The detailed results are displayed in Figure 2.

As shown by Figure 2a, compared with AEE and MGD, the SOS method performs statistically
less efficiently by achieving the largest MSE values. This finding is obvious, because the AEE and
MGD methods exploit the full data information. Therefore, in theory, the two estimators are both√

N-consistent. However as suggested by Theorem 2, the SE of the SOS estimator is O{1∕(nK) +
1∕N}. Then, the SOS estimator should be statistically less efficient when nK is smaller than N.
Although the SOS estimator has the worst statistical efficiency, its MSE has already achieved 10−4,
indicating satisfactory estimation precision in practice.
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F I G U R E 2 The mean squared error and time costs (in logarithm) are obtained by the sequential one-step,
mini-batch gradient descent, and aggregated estimating equation methods for different sample sizes N under the
logistic regression model. (a) Estimation performance; (b) Computation performance
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We then compare the computational efficiency of the three methods. We fix the learning rate
as 0.2 in the MGD method. All experiments are conducted on a server with 12× Xeon Gold 6271
CPU and 64 GB RAM. The total time costs (in s) consumed by the different methods under differ-
ent sample sizes are averaged over B = 200 random replications. Then, the averaged time costs are
plotted in Figure 2b in log-scale. As shown, the MGD method takes the most computational time.
The AEE and SOS methods are much more computationally efficient than the MGD method. Fur-
thermore, the SOS method takes less computational time than the AEE method. In general, the
time costs consumed by the SOS method are only half those of the AEE method. These empirical
findings confirm that the SOS method is computationally more efficient than the AEE and MGD
methods.

4 APPLICATION TO CUSTOMER CHURN ANALYSIS

4.1 Data description and pre-processing

We apply the SOS method to a large-scale customer churn data set, which is provided by a
well-known securities company in China. The original data set contains 12 million transaction
records from 230,000 customers from September to December 2020. This data set is originated
from 10 files, which are directly exported from the company’s database system. The 10 files record
different aspects of users. Specifically, the 10 files include: user basic information, behaviour infor-
mation on the company’s APP, daily asset information, daily market information, inflow-outflow
information, debt information, trading information, fare information and information of holding
financial products or service products. In total, the 10 files contain 398 variables describing the
asset and non-asset information of a specific customer on a specific trading day. The asset infor-
mation contains 325 variables related to customer transactions, such as assets, stock value, trading
volume, profit and debit. The non-asset information contains 73 variables about detailed cus-
tomer information, such as customer ID, gender, age, education and login behaviour. The whole
data set takes up about 300 GB on a hard drive.

The research goal of this study is to provide an early warning of customer churn status, which
may help the securities company to retain customers. According to the common practice of the
securities company, a customer is defined as lost when the following two criteria are met: (1)
the customer has less than 20,000 floating assets in 20 trading days; and (2) the customer logs in
less than three times in 20 trading days. Based on this definition, a new binary variable Churn is
used to indicate whether the customer is lost (Churn= 1) or not (Churn= 0). Given the response
is a binary variable (churn or not churn), a logistic regression model can be built to help cus-
tomer churn prediction. To predict the customer churn status, we compute both asset-related and
non-asset-related covariates for each customer using transaction information ahead of 20 trad-
ing days. In other words, all used covariates can help forecast the churn status of customers 20
trading days in advance.

Before model building, we conduct several steps to preprocess the original data set. First, we
check the missing value proportions for all variables in the data set, and then discard variables
whose missing value proportions were larger than 80%. Second, basic summary statistics (e.g.,
mean and SD) are computed for each variable to help detect potential outliers. Third, we check
the stability for each variable to detect potential changepoints. Fortunately, we find the daily
basic statistics for most variables are stable from September to December. Therefore, all daily
observations are pooled together in the subsequent analysis.
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T A B L E 4 The detailed information about responses and covariates

Variables Source File Description

Response Churn Asset Whether the customers churn or not. Yes: 13.7%;
No: 86.3%.

Asset MaxMVS Market The maximum market value of stock.

StdTF Fare The SD of total fare.

MaxFA Asset The maximum floating assets.

StdTD Debt The SD of total debt.

WheTVAM Trading Whether the trading volume of A-shares is
missing or not. Yes: 69.1%; No: 30.9%.

WheIFM Inflow Whether the inflow of funds is missing or not.
Yes: 81.3%; No: 18.7%.

Non- asset Age Basic The age of customers (4 levels). <40: 20.6%;
40–50: 25.8%; 50–60: 29.3%; >60: 24.3%.

WheHFP FProduct Whether the customers hold financial products or
not. Yes: 71.5%; No: 28.5%.

WheHSP SProduct Whether the customers hold service products or
not. Yes: 86.0%; No: 14%.

WheL Behaviour Whether the customers Login or not. Yes: 16.8%;
No:83.2%.

Note: “FProduct” and “SProduct” represent source files of holding financial products or service products.

Preliminary analysis shows that strong correlations exist among most variables in the original
data set. Therefore, we design a practical procedure for variable selection, borrowing ideas from
the independence screening method (Fan & Song, 2010). Specifically, we first classify all covari-
ates into 10 groups based on their source files. Then a logistic regression model with each single
covariate is conducted for variable selection. It is notable that, the prediction performance of the
customer churn model should be evaluated on a test data set. Therefore, we first order all observa-
tions by time and then split the whole data set into the training data set (the first 70% observations)
and the test data set (the last 30% observations). Then we build a logistic regression model with
each single covariate on the training data set, and the resulting AUC value is recorded to mea-
sure the prediction ability of the specific covariate. Next in each variable group, the covariate with
the largest AUC value is chosen. This leads to the final predictor set consisting of 10 covariates.
Table 4 shows the detailed information about the responses and the 10 selected covariates.

We then explore the relationship between the responses and the covariates. For illus-
tration, we take MaxFA and WheL as examples of continuous and categorical covariates,
respectively. Among the whole data, the percentage of churn customers is 13.7%. Because the
continuous variable MaxFA has a highly right-skewed distribution, logarithmic transformation
is applied. Figure 3a presents the boxplot of MaxFA (in log-scale) under different levels of
Churn. As shown, customers with fewer maximum floating assets are more likely to churn.
As for the categorical variable WheL, Figure 3b presents the spinogram of this variable under
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F I G U R E 3 The boxplot of Maximum Floating Assets (in log-scale) (a) and the spinogram of Whether to
Login (b) under the response Churn= 0 (non-churn status) and Churn= 1 (churn status)

different levels of Churn. As shown, customers who do not log into the system are more likely
to churn.

4.2 Customer churn prediction using SOS

We build a logistic regression model to investigate influential factors in the churn status of cus-
tomers. The whole data set is quite large and cannot be analysed in the computer memory directly.
To handle this huge data set, we do not consider DC methods for the lack of distributed systems
in hand. We also do not consider the non-informative sub-sampling methods, because they are
usually statistically less efficient than the SOS method. In addition, they require computing the
optimal sampling probabilities for the entire data set, which would incur high computational
cost. Based on these considerations, the SOS method is applied to estimate the logistic regression
model. To evaluate the predictive ability of the SOS method, we ordered all observations by time
and then split the whole data set into the training data (the first 70% observations) and the test
data (the last 30% observations). Below, we would build a logistic regression model on the training
data set, and then evaluate the prediction performance on the test data set.

Before applying the SOS method on the training data set, we need to set the sub-sampling size
n and the sub-sampling times K. To balance between K and n, we first select the sub-sampling size
n, and then determine the total sub-sampling times K based on n. Specifically, the sub-sampling
size n is mainly decided by the computation resources. In this real application, we use a server
with 12*Xeon Gold 6271 CPU and 64 GB RAM for computation. In addition, the securities com-
pany requires fast computation speed for updating the customer churn model conveniently day
by day in the future. Based on the limited computation resources and the fast computation
requirement, we fix n = 10, 000.

For the sub-sampling times K, we apply an iterative strategy to select an appropriative value.
We define 𝛽K as the SOS estimate obtained with K times sub-sampling. Then, with increasing
K, we compare 𝛽K−1 with 𝛽K . An appropriate K is chosen when the l2-norm ||𝛽K − 𝛽K−1||2 is
smaller than a pre-defined threshold. Other selection methods can also be considered, such as the
five-fold cross-validation method. Specifically, we can monitor the out-sample prediction accu-
racy under each K, and then select an optimal value that can balance the prediction accuracy and
the computational time. In this work, we vary K from 10 to 100, with a step of 10. Then, we use
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F I G U R E 4 The value of l2-norm ||𝛽K − 𝛽K−1||2 under different K

the iterative strategy to select K. Under each K, we compute the l2-norm ||𝛽K − 𝛽K−1||2 and the
corresponding values are plotted in Figure 4. Based on some preliminary analysis, we find the
coefficients of variables are not very small. Therefore, we set a threshold 10−4 to find stable esti-
mated coefficients. By this threshold, we choose K = 20. In addition, as shown by Figure 4, K = 20
is also the point with the fastest decline speed of ||𝛽K − 𝛽K−1||2. Based on the above considerations,
we finally choose K = 20.

Table 5 presents the detailed regression results for the SOS methods on the training data set.
For comparison purpose, we also report the regression results on the full data set in Table 5.
In general, the regression results under the training data and full data are similar. Specifically,
the variable MaxFA plays a significantly negative role in churn status, which implies that the
fewer the maximum floating assets, the more likely the customers would be to churn. This is
in accordance with the descriptive results shown in Figure 3a. The variable WheTVAM plays a
significantly positive role in the churn status, which implies that customers with no volume are
more likely to churn. Similarly, customers with no inflow of funds are more likely to churn. As for
non-asset-related variables, the variable WheHSP plays a significantly negative role in the churn
status. This result indicates customers who do not hold service products are more likely to churn.
In addition, the variable Age has significant influence on the churn status for some age groups.
Specifically, customers in the age groups 50–60, and >60 are more likely to churn than those in
the age group <40. Finally, the variable WheL has a significantly negative effect, indicating that
customers who do not log in to the system in the past 20 trading days are more likely to churn.
For the purpose of robustness check, we also conduct the same experiment on four daily data
sets, each of which is randomly selected from September to December, respectively. The detailed
results are shown in Appendix D in Data S1, which suggest stable coefficient estimates across
time.

Finally, we evaluate the predictive ability of the model. In the above, we have obtained the
logistic regression model on the training data set. Then, the estimated model is used to predict
the churn status of customers in the test data set. We use the receiver operating characteris-
tic (ROC) curve combined with the area-under-curve (AUC) value to measure the predictive
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T A B L E 5 The estimation results for logistic regression using the sequential one-step method on the
training data set and full data set, respectively

Training data Full data

Variable Est. SE p-Value Sig. Est. SE p-Value Sig.

Intercept −23.753 0.351 <0.001 *** −23.482 0.331 <0.001 ***

MaxMVS −11.736 0.405 <0.001 *** −11.646 0.336 <0.001 ***

StdTF 2.759 0.313 <0.001 *** 2.829 0.261 <0.001 ***

StdTD −3.568 0.316 <0.001 *** −3.614 0.263 <0.001 ***

MaxFA −27.699 0.708 <0.001 *** −27.604 0.588 <0.001 ***

WheTVAM: Yes 1.293 0.306 <0.001 *** 1.333 0.255 <0.001 ***

WheIFM: Yes 0.529 0.253 0.037 * 0.544 0.255 0.033 *

Age 40–50 0.426 0.306 0.164 0.450 0.255 0.077

50–60 0.732 0.282 0.009 ** 0.693 0.255 0.007 **

>60 1.131 0.308 <0.001 *** 1.155 0.257 <0.001 ***

WheL: Yes −2.700 0.312 <0.001 *** −2.622 0.259 <0.001 ***

WheHFP: Yes 0.476 0.274 0.083 0.451 0.254 0.076

WheHSP: Yes −0.468 0.226 0.039 * −0.523 0.255 0.041 *

Notes: We report the estimated coefficient 𝛽K , standard error (̂SE∗(𝛽K )), and p-values for all variables. The symbols *, **, ***
represent a significant influence under the significance level 5%, 1% and 0.1%, respectively.

F I G U R E 5 The receiver operating characteristic curve of the logistic regression using the sequential
one-step method on test data
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accuracy, which is shown in Figure 5. As shown, the corresponding AUC value in this data
split is 0.946, which suggests very good predictive ability of the proposed model in classify-
ing customers as churn or non-churn. For comparison purpose, we also apply the OS method
with K = 20 and n = 10, 000 on the training data set. The AUC value of the OS method on
the test data is 0.938, which is smaller than the SOS method. We also compare the computa-
tional time for the two methods. On a server with 12× Xeon Gold 6271 CPU and 64 GB RAM,
the computational time for the SOS and OS methods are 3.02 and 10.01 s, respectively. It is
obvious that the SOS method behaves more computationally efficiently than the OS method
does.

Finally, we present a practical customer recovery strategy using the established model in
Table 5. First, we sort all customers in the test data set by their predicted churn probabilities
using our model. Then, we divide all customers into 10 groups of equal size. Specifically, group
1 consists of customers with the highest predicted churn probabilities, which we refer to as the
high-risk group; and group 10 contains customers with the lowest predicted churn probabilities,
which is regarded as the low risk group. In each of the 10 groups, we calculate the ratio of truly
churned customers. As shown in Figure 6, the churn ratio of all customers is only 13.7%, but the
churn ratio of group 1 is as high as 81.5%. This result verifies the predictive power of the estab-
lished model. In other words, customers with high predicted churn probabilities tend to churn in
reality. This finding suggests that we need to pay more attention to this group of customers and
employ active strategies to retain them, such as face-to-face visits, reducing commissions, and
providing exclusive services. It is also notable that group 2 shows higher churn ratios (i.e., 31.0%)
than that of all customers (13.7%). Therefore, group 2 requires close attention and continuous
monitoring.

F I G U R E 6 The churn ratios of 10 groups divided by their predicted churn probabilities under the
sequential one-step method
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5 CONCLUDING REMARKS

In this work, we propose a sampling-based method for customer churn analysis with mas-
sive data sets. Classic sub-sampling methods require only one round of sub-sampling, but it is
necessary to calculate non-uniform sampling probabilities of all data points. This often makes
classic sub-sampling methods computationally inefficient. To address this issue, we propose the
SOS method, which considers sampling data points with uniform probabilities but operates the
sub-sampling step repeatedly. In this way, the sub-sampling cost can be largely reduced. Based on
the SOS method, a sequence of estimators is computed, each of which is calculated using one-step
updating based on the newly sampled sub-data. The final SOS estimate is the average of all esti-
mators. We establish the theoretical properties of the SOS estimator. Both its bias and SE can be
reduced by increasing the sub-sampling times or the sub-sample size. The performance of the
SOS estimator is elaborated by simulation studies. Finally, we apply the SOS method to a real
customer churn data set of a securities company. By using the SOS method, we can handle the
large-scale data set, obtain useful factors that influence costumers’ churn status, and achieve a
high prediction accuracy for latent churn customers. It is remarkable that, although the proposed
SOS method is designed for estimation of logistic regression, it can be easily extended to other
generalised regression models.

We consider directions for future study. First, the SOS estimator still depends on multiple
rounds of sub-sampling. New sub-sampling methods could be designed to reduce the number of
sub-sampling times, which could help reduce the computational cost further. Second, the weights
of previous estimators in the final SOS step are the same. However, in reality, one could consider
larger weights for estimators in later steps because they have better performance. Finally, a good
topic for future study when dynamic massive data are available is how to extend the SOS method
for data streams.
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APPENDIX A. USEFUL LEMMAS

In this section, we prove some useful lemmas.

Lemma 1. Considering the convergence rate of 𝛽1, we have 𝛽1 − 𝛽0 = Op(n−1∕2).

For generalised linear models, under conditions (C2) and (C3), the objective function 𝓁1(𝛽)
is a strictly concave function in 𝛽0. As a result, to verify that 𝛽1 = ̂

𝛽1 is
√

n-consistent, it suffices to
follow the technique of Fan and Li (2001) to show that, for any 𝜖 > 0, there exists a finite constant
C > 0 such that,

lim
n

sup P
{

sup
|u|=C

𝓁1(𝛽0 + n−1∕2u) < 𝓁1(𝛽0)
}
≥ 1 − 𝜖. (A1)

To this end, we define 𝛽u = 𝛽0 + Cu∕
√

n where C > 0 is a fixed constant and u ∈ Rp is a
p-dimensional vector with unit length (i.e., ||u|| = 1). Then, we apply the Taylor expansion and
obtain

sup
|u|=1

{
𝓁1(𝛽0 + Cn−1∕2u) − 𝓁1(𝛽0)

}
= n−1∕2Cu⊤

̇𝓁1(𝛽0) + (2n)−1C2u⊤

̈𝓁1(𝛽0)u + op(1)

= Cu⊤

1 − C2u⊤

2u∕2 + op(1), (A2)

where1 = ̇𝓁1(𝛽0)∕
√

n and2 = − ̈𝓁1(𝛽0)∕n.
Next, we compute E(1) and var(1) as follows. First, we consider E(1).

E(1) = E {E(1| )}

=
√

nE
[

E
{ 1

n
̇𝓁1(𝛽0)|

}]

=
√

nE

{

N−1
N∑

i=1
Si(𝛽0)

}

= o(1),
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where  = {(X1,Y1), (X2,Y2), · · · , (XN ,YN)}, and Si(𝛽0) is the score function of the ith observation
for 1 ≤ i ≤ N.

Second, we compute var(1). It can be calculated that

var(1) = E {var(1| )} + var {E(1| )}

= E

{
1
n

var

(
∑

i∈1

Si(𝛽0)|

)}

+ var

{√
n

N

N∑

i=1
Si(𝛽0)

}

= E
(
̂Σ
−1)

+ n
N
Σ−1

, (A3)

where ̂Σ
−1
= N−1∑N

i=1Si(𝛽0)S⊤

i (𝛽0) and Σ−1 = E
(
̂Σ
−1)

= E
{

Si(𝛽0)S⊤

i (𝛽0)
}

. Note that under condi-
tion (C1), n∕N → 0, then (A3) converges to Σ−1 as n → ∞. This suggests that 1 is an Op(1).
By a similar technique, it can be verified that 2 →p Σ−1. Consequently, as long as C is suffi-
ciently large, the quadratic term in (A2) dominates its linear term. Therefore, 𝓁1(𝛽0 + Cn−1∕2u) −
𝓁1 (𝛽0) < 0 with probability tending to 1 as n → ∞. This suggests that with probability tending
to 1, a local optimiser (i.e., ̂

𝛽1 = 𝛽1) exists, such that 𝛽1 − 𝛽0 = Op(n−1∕2). The optimiser satisfies
̇𝓁1

(
𝛽1

)
= 0. The conclusion is thus proved.

Lemma 2. Denote the mth (1 ≤ m ≤ M) sequential sub-sample as m = {(Xm,Ym), · · ·
(Xm+n−1,Ym+n−1)}. Thus, given 𝛽0, define Um =

{
n−1

̈𝓁m(𝛽0)
}−1 {n−1

̇𝓁m(𝛽0)
}

, and
̄U = M−1∑M

m=1Um. The expectation and variance of ̄U are E( ̄U) = 0 and

var( ̄U) = 1
N
Σ
{

1 + 2n
3N

+ o
( n

N

)}
. (A4)

Furthermore, recall that U(k) =
{

n−1
̈𝓁k (𝛽0)

}−1 {n−1
̇𝓁k (𝛽0)

}
, and ̄Uk∗ = k∗−1∑k∗

k=1U(k). For
any 2 ≤ k∗ ≤ K, we have

E( ̄Uk∗ ) = 0, and var( ̄Uk∗ ) =
1

nk∗
Σ +

(
1 − 1

k∗
) 1

N
Σ{1 + o(1)}. (A5)

Proof. The lemma is proved in the following two steps. In the first step, we verify E( ̄U) = 0 and
Equation (A4). In the second step, we prove Equation (A5).
Step 1. For the expectation, we have E(Um) = E {E(Um|Xm)}=0, where Xm =
{Xm, · · · ,Xm+n−1}. and

E(UmU⊤

m) = E
(

E
[{

n−1
̈𝓁m(𝛽0)

}−1 {n−1
̇𝓁m(𝛽0)

}{
n−1

̇𝓁m(𝛽0)
}
⊤

{
n−1

̈𝓁m(𝛽0)
}−1

]
|Xm

)

= 1
n

E
{

n−1
̈𝓁m(𝛽0)

}−1 = 1
n
Σ. (A6)

Next, we consider the variance of ̄U. We have var( ̄U) = E( ̄U ̄U⊤) − E( ̄U)E( ̄U)⊤ = E( ̄U ̄U⊤),
as E ̄U = 0. Furthermore,

E( ̄U ̄U⊤) = 1
M2 E(U1 + · · · + UM)2 =

1
M2

{ M∑

m=1
E
(

UmU⊤

m
)
+

∑

m1≠m2

E
(

Um1 U⊤

m2

)
}

.
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It can be verified that
∑M

m=1E
(

UmU⊤

m
)
= Mn−1Σ. Next, we focus on the calculation of

M−2 ∑
m1≠m2

E
(

Um1 U⊤

m2

)
. We assume that n∕N → 0, and M = N − n + 1 should be much

larger than the sub-sample size n. We now discuss the two cases.
First, when |m1 −m2| ≥ n, we have E(Um1 U⊤

m2
) = 0. There are (M − n)(M − n + 1)

pairs of m1 and m2 in this case. Second, let |m1 −m2| = m′; when 0 < m′
< n, we have

E
(

Um1 U⊤

m2

)
= n−1(n −m′)Σ, and there are 2(M −m′) pairs of m1 and m2 in this case. As a

result,
∑

0<m′
<n E

(
Um1 U⊤

m2

)
= 2n−1c1Σ, where c1 = n(n − 1)(3M − n − 1)∕6. We can derive

that E( ̄U ̄U⊤) = (nM)−2(nM + 2c1)Σ. Then, we have

E( ̄U ̄U⊤) =
(N − n + 1) + (n − 1)(3N − 4n + 2)∕3

n(N − n + 1)2
Σ

= 1
N

{
1 + 2n

3M
+ o

( n
N

)}
Σ.

This finishes the first step.
Step 2. By a similar proof technique to that for Step 1, we immediately have E( ̄Uk∗ ) = 0.
We then focus on the computations of var( ̄Uk∗ ). To study the variance of ̄Uk∗ , define E∗(⋅)
and var∗(⋅) as the conditional expectation and conditional variance, respectively, given =
{U1,U2, · · · ,UM}. We know that var( ̄Uk∗ ) = E{var∗( ̄Uk∗ )} + var{E∗( ̄Uk∗ )}. Then, we study
E{var∗( ̄Uk∗ )} and var{E∗( ̄Uk∗ )} separately.

First, we compute E{var∗( ̄Uk∗ )}, which is

E{var∗( ̄Uk∗ )} =
1
k∗

k∗∑

k=1
E
{

var∗(U(k))
}
= 1

k∗
E
{

E∗(U(k∗) − ̄U)(U(k∗) − ̄U)⊤
}

= 1
k∗M

E

{ M∑

m=1
(Um − ̄U)(Um − ̄U)⊤

}

= 1
k∗

(
EUmU⊤

m − E ̄U ̄U⊤

)
.

Second, we consider var{E∗( ̄Uk∗ )}. We have

E∗( ̄Uk∗ ) =
1
k∗

k∗∑

k=1
E∗{U(k)} =

1
m

M∑

m=1
Um = ̄U.

Then, var
{

E∗( ̄Uk∗ )
}
= var( ̄U) = E( ̄U ̄U⊤). Thus,

var( ̄Uk∗ ) = E
{

var∗( ̄Uk∗ )
}
+ var

{
E∗( ̄Uk∗ )

}

= 1
k∗

EUmU⊤

m −
1
k∗

E ̄U ̄U⊤ + E ̄U ̄U⊤

= 1
nk∗

Σ +
(

1 − 1
k∗

)
var( ̄U). (A7)

This completes the proof.
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Lemma 3. Define R1k and R2k as follows,

R1k =
{

n−1
̈𝓁k (𝛽k−1)

}−1 [
(𝛽k−1 − 𝛽0)⊤

{
n−1Δk−1,j

}
(𝛽k−1 − 𝛽0)

]
, k ≥ 2

R2k =
[{

n−1
̈𝓁k (𝛽0)

}−1 −
{

n−1
̈𝓁k (𝛽k−1)

}−1
]

n−1
̇𝓁k (𝛽0), k ≥ 2.

Here Δk,j = (Δk,j,i1i2) ∈ Rp×p for 1 ≤ j ≤ p, and Δk,j,i1i2 = 𝜕

̇𝓁j,k+1(𝛽)∕𝜕𝛽i1𝜕𝛽i2 |𝛽= ̃

𝛽k
, ̇𝓁j,k+1(𝛽) is

the j th element of ̇𝓁k+1(𝛽) and ̃

𝛽k = 𝜂

̂

𝛽k + (1 − 𝜂)𝛽0 for some 0 ≤ 𝜂 ≤ 1. In particular, R11 =
{

n−1
̈𝓁1(𝛽0)

}−1
[
(𝛽1 − 𝛽0)⊤

{
n−1Δ0,j

}
(𝛽1 − 𝛽0)

]
, with Δ0,j,i1,i2 = 𝜕

̇𝓁j,1(𝛽)∕𝜕𝛽i1𝜕𝛽i2 |𝛽= ̃

𝛽1
and

R21 = 0.Then, if ||𝛽k − 𝛽0|| ≤ 𝜅1

{√
1∕(nk) + 1∕N

}
{1 + op(1)}, then for any k∗ ≥ 2, we have

Δk∗ = k∗−1∑k∗
k=1(R1k + R2k) ≤ 𝜅2[(log k∗∕n)1∕2{1∕ (nk∗) + 1∕N}1∕2]{1 + op(1)}. Here, 𝜅1, 𝜅2

are some positive constants.

Proof. By condition (C4), it can be calculated that

||Δk∗ || ≤ C max
1≤k≤k∗

𝜆max( ̂Σk)

[
1
k∗

k∗∑

k=1
(𝛽k−1 − 𝛽0)⊤(𝛽k−1 − 𝛽0)

]

+ C 1
k∗

k∗∑

k=1
||𝛽k−1 − 𝛽0||||n−1

̇𝓁k (𝛽0)||. (A8)

Here, 𝜆max(M) denotes the largest absolute eigenvalue of M, ̂Σk =
{

n−1
̈𝓁k (𝛽k−1)

}−1
, Σk =

{
n−1

̈𝓁k (𝛽0)
}−1, and we define 𝛽0 = 𝛽1. To analyse Equation (A8), we then study the two

terms on the right of the equation separately in the following two steps.
Step 1. First, we are going to show that max1≤k≤k∗ 𝜆max( ̂Σk) is an Op(1). It is sufficient to

show that with probability tending to 1, we have

𝜏min ≤ min
1≤k≤k∗

𝜆min( ̂Σk) ≤ max
1≤k≤k∗

𝜆max( ̂Σk) ≤ 𝜏max, (A9)

for some positive constants 𝜏min < 𝜏max < ∞. By condition (C3), we can find two
positive constants, such that 2𝜏min ≤ 𝜆min(Σ) ≤ 𝜆max(Σ) ≤ 2−1

𝜏max, for two positive
constants 𝜏min < 𝜏max < ∞. Thus, we know immediately that 2𝜏min ≤ inf ||r||=1 r⊤Σr ≤
sup||r||=1 r⊤Σr ≤ 2−1

𝜏max for a p-dimensional vector r. Thus, the desired conclusion (A9) is
implied by

P
(

max
1≤k≤k∗

sup
||r||=1

|||r
⊤( ̂Σk − Σ)r

||| > 𝜖

)
→ 0, (A10)

where 𝜖 > 0 is an arbitrary positive number. Then, the left-hand side of (A10) is bounded
by

∑
1≤k≤k∗ P

(
sup||r||=1 |r⊤( ̂Σk − Σ)r| > 𝜖

)
. Note that for any k, we have

|r⊤( ̂Σk − Σ)r| ≤
∑

j1j2

|rj1 | × |rj2 | × |�̂�j1j2,k − 𝜎j1j2 |
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≤ max
1≤j1,j2≤p

|�̂�j1j2,k − 𝜎j1j2 |
∑

1≤j1,j2≤p
|rj1 | × |rj2 |

≤ max
1≤j1,j2≤p

|�̂�j1j2,k − 𝜎j1j2 |

(
∑

j
|rj|

)2

≤ p max
1≤j1,j2≤p

|�̂�j1j2,k − 𝜎j1j2 |.

Consequently, the left-hand side of (A10) can be further bounded by

≤

∑

1≤k≤k∗
P
(

max
1≤j1,j2≤p

|�̂�j1j2,k − 𝜎j1j2 | >
𝜖

p

)

≤

∑

1≤k≤k∗

∑

1≤j1,j2≤p
P
(
|�̂�j1j2,k − 𝜎j1j2 | >

𝜖

p

)
. (A11)

Next, under condition (C5), it can be proved that P(|�̂�j1j2,k − 𝜎j1j2 | > 𝜖) ≤ C1 exp(−C2n𝜖2) for
two positive constants C1 and C2 by theorem 3.2 on p. 45 of Saulis and Statulevičius (2012)
and the proof technique of Wang (2009). Thus, (A11) can be bounded by

≤ k∗p2C1 exp
(
−C2n 𝜖

2

p2

)

= C1 exp
{

log(k∗) + 2 log(p) − C2n 𝜖

2

p2

}

= C1 exp
{

log(k∗)
(

1 − C2
n𝜖2

log(k∗)p2

)
+ 2 log(p).

}
. (A12)

As under condition (C1), log(K) = o(n), the right-hand side of (A14) converges to 0 as n →
∞. This implies that max1≤k≤k∗ 𝜆max( ̂Σk) is an Op(1).

Step 2. In the second step, we investigate max1≤k≤k∗ ||n−1
̇𝓁k (𝛽0)||. Similar to Step 1, it

can be proved that P
(
max1≤k≤k∗ ||n−1

̇𝓁k (𝛽0)|| > 𝜖

)
can be bounded by

≤

∑

1≤k≤k∗

∑

1≤j≤p
P
(
|n−1𝓁j,k (𝛽0)| >

𝜖

p

)
. (A13)

≤ k∗pC1 exp
(
−C2n 𝜖

2

p2

)

= C1 exp
{

log(k∗) + log(p) − C2n 𝜖

2

p2

}

= C1 exp
{

log(k∗)
(

1 − C2
n𝜖2

log(k∗)p2

)
+ log(p)

}
. (A14)

If we replace 𝜖 by 𝛾n𝜖
′, then we can verify that if 𝛾n =

√
log(k∗)∕n, there exists

𝜖

′ such that the right-hand side of (A14) could be arbitrarily small. This leads to
max1≤k≤k∗ ||n−1

̇𝓁k (𝛽0)|| = Op(
√

log(k∗)∕n).
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As a result, the right-hand side of (A8) is further bounded by

≤ C

(
∑

1≤k≤k∗
||𝛽k−1 − 𝛽0||2∕k∗

)

+

(
∑

2≤k≤k∗
||𝛽k−1 − 𝛽0||∕k∗

)

Op(
√

log(k∗)∕n)

= Op

(
log k∗

nk∗

)
+ Op

{
log k∗

n

( 1
nk∗

+ 1
N

)}1∕2

= Op

{
log k∗

n

( 1
nk∗

+ 1
N

)}1∕2

.

This completes the proof.

APPENDIX B. PROOF OF THE THEOREMS

In this section, we provide the detailed proof of the theorems and proposition to establish the
theoretical properties of the proposed estimator.

B.1 Proof of Theorem 1
This theorem is to be proved in two parts. In the first part, we prove Theorem 1 (1). In the second
part, we verify the asymptotic normality of the SOS estimator.

Part 1. We prove Theorem 1 (1) in the following two steps. In the first step, we show
that for any k∗ ≥ 2, 𝛽

∗
k = 𝛽0 + k∗−1∑k∗

k=1(R1k + R2k) − k∗−1∑k∗
k=1U(k), where R1k and R2k are

defined in Lemma 3. In the second step, denote Δ = K−1∑K
k=1(R1k + R2k), and recall that

U(k) =
{

n−1
̈𝓁k (𝛽0)

}−1 {n−1
̇𝓁k (𝛽0)

}
, ̄UK = K−1∑K

k=1U(k), we then verify that E ̄UK = 0, var(𝛽k) =
var( ̄UK){1 + o(1)} = {1∕(nK) + 1∕N} Σ{1 + o(1)} and Δ = Op

[√
(log k∗∕n){1∕(nk∗) + 1∕N}

]
.

Step 1. By the Taylor expansion, we have

̇𝓁k+1(𝛽0) = ̇𝓁k+1(𝛽k) + ̈𝓁k+1 (𝛽k)(𝛽0 − 𝛽k)

+
⎛
⎜
⎜
⎜
⎝

(𝛽k − 𝛽0)⊤Δk,1(𝛽k − 𝛽0)
...

(𝛽k − 𝛽0)⊤Δk,p(𝛽k − 𝛽0)

⎞
⎟
⎟
⎟
⎠

, (B1)

Thus, based on (1), we have

̂

𝛽k+1 = 𝛽k −
{
̈𝓁k+1(𝛽k)

}−1 {
̇𝓁k+1(𝛽k) − ̇𝓁k+1(𝛽0)

}
−

{
̈𝓁k+1(𝛽k)

}−1
̇𝓁k+1(𝛽0) (B2)

= 𝛽k −
{
̈𝓁k+1(𝛽k)

}−1
⎧
⎪
⎨
⎪
⎩

̈𝓁k+1(𝛽k)(𝛽k − 𝛽0) −
⎛
⎜
⎜
⎜
⎝

(𝛽k − 𝛽0)⊤Δk,1(𝛽k − 𝛽0)
...

(𝛽k − 𝛽0)⊤Δk,p(𝛽k − 𝛽0)

⎞
⎟
⎟
⎟
⎠

⎫
⎪
⎬
⎪
⎭

−
{
̈𝓁k+1(𝛽k)

}−1
̇𝓁k+1(𝛽0)

= 𝛽0 +
{

n−1
̈𝓁k+1(𝛽k)

}−1 [
(𝛽k − 𝛽0)⊤

{
n−1Δk,j

}
(𝛽k − 𝛽0)

]

+
[{

n−1
̈𝓁k+1(𝛽0)

}−1 −
{

n−1
̈𝓁k+1(𝛽k)

}−1
]

n−1
̇𝓁k+1(𝛽0)

−
{

n−1
̈𝓁k+1(𝛽0)

}−1n−1
̇𝓁k+1(𝛽0). (B2)
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By (B3), we can rewrite 𝛽k∗ as

𝛽

∗
k = 𝛽0 +

1
k∗

k∗∑

k=1
(R1k + R2k) −

1
k∗

k∗∑

k=1
U(k), for any k∗ ≥ 2. (B4)

Step 2. This step is decomposed into two sub-steps. In Step 2.1, we verify that ||𝛽k∗ − 𝛽0|| ≤
𝜅1(

√
1∕(nk∗) + 1∕N){1 + op(1)} for some constant 𝜅1 in a deductive way. In Step 2.2, we prove the

remaining results.
Step 2.1. First, we consider k∗ = 2. By (B4), it can be verified that 𝛽2 = 𝛽0 + 2−1

({
n−1

̈𝓁2(𝛽1)
}−1[(𝛽1 − 𝛽0)⊤

{
n−1Δ1,j

}
(𝛽1 − 𝛽0)

]
+

{
n−1

̈𝓁1(𝛽0)
}−1

[
(𝛽1 − 𝛽0)⊤

{
n−1Δ0,j

}
$𝛽1 − 𝛽0

)]

+
[{

n−1
̈𝓁2 (𝛽0)

}−1 −
{

n−1
̈𝓁2(𝛽1)

}−1
]

n−1
̇𝓁2(𝛽0)

)
− ̄U2. From Lemma 2, we have E( ̄U2) = 0 and

var( ̄U2) = (2n)−1Σ + (1 − 1∕2)N−1Σ {1 + o(1)} . Consequently, || ̄U2||2
≤ 2

{
(2n)−1Σ + (1 − 1∕2)

N−1Σ
}
{1 + op(1)}. Furthermore, by Lemma 1, we have 2−1 {R11 + R12} = Op(1∕n) and

2−1 {R21 + R22} = Op(1∕n). As a result, 2−1∑2
k=1(R1k + R2k) = op( ̄U2).

Next, we assume that for any 2 ≤ k ≤ k∗ − 1, we have || ̄Uk||2
≤ 2

{
(kn)−1Σ + (1 − 1∕k)

N−1Σ
}
{1 + op(1)} and k−1∑k

̃k=1(R1̃k + R2̃k) = op( ̄Uk). This suggests that ||𝛽k − 𝛽0|| ≤
𝜅1(

√
1∕nk + 1∕N){1 + op(1)} for some 𝜅1 > 0. By Lemma 2, we know that E( ̄Uk∗ ) = 0

and var( ̄Uk∗ ) = 1
k∗n
Σ + (1 − 1∕k∗) 1

N
Σ {1 + o(1)} . Furthermore, by Lemma 3, we have

1
k∗
∑k∗

k=1(R1k + R2k) = Op

[√
(log k∗∕n){1∕(nk∗) + 1∕N}

]
= op(

√
1∕(nk∗) + 1∕N) = op( ̄Uk∗ ).

The penultimate equality holds, as log k∗ = o(n). As a result, we have proved ||𝛽k∗ − 𝛽0|| ≤
𝜅1(

√
1∕(nk∗) + 1∕N){1 + op(1)}.

Step 2.2. Finally, by (B4), we know

𝛽K = 𝛽0 +
1
K

K∑

k=1
(R1k + R2k) − ̄UK ,

by the results of Step 2.1 and Lemma 3, we have K−1∑K
k=1(R1k + R2k) = Op[(log K∕n)

{1∕(nK) + 1∕N}]1∕2. In addition, by Lemma 2, we have E ̄UK = 0, and var( ̄UK) =
Σ
{

1∕(nK) + N−1(1 − 1∕K)
}
{1 + o(1)}. This accomplishes the proof of Step 2.2. Combining the

results of Steps 1 and 2, we finish the first part.
Part 2. In the second part, we verify the asymptotic normality of the SOS estimator. As

from Part 1, we have verified that K−1∑K
k=1(R1k + R2k) = op( ̄UK), it suffices to study ̄UK . To this

end, we decompose ̄UK into ̄UK = ̄U (1)
K + ̄U (2)

K with ̄U (1)
K = K−1∑K

K=1Σ
{

n−1
̇𝓁k (𝛽0)

}
and ̄U (2)

K =
K−1∑K

K=1

[{
n−1

̈𝓁k (𝛽0)
}−1 − Σ

] {
n−1

̇𝓁k (𝛽0)
}

. We then calculate the two terms separately.

We first compute ̄U (2)
K , by the same analysis of Lemma 2, it can be proved that E( ̄U (2)

K ) = 0, and
var( ̄U (2)

K ) =
{
(nK)−1 + N−1(1 − 1∕K)

}
o(1) = o(1∕N)when nK∕N → ∞ and K → ∞.This suggests

that ̄U (2)
K = op(1∕

√
N). Next, we prove the normality of

√
N ̄U (1)

K .To this end, it suffices to show that
its characteristic function f (t) = E

[
exp(it⊤K−1∑K

K=1
{

n−1
̇𝓁k (𝛽0)

}]
→ exp

{
− t⊤Σ−1t∕2

}
. Denote

L = M−1∑M
m=1

{
n−1

̇𝓁m(𝛽0)
}

. Then, we have

f (t) = E

[

exp

{
it⊤
𝜏K

K∑

k=1

[
{n−1

̇𝓁Sk (𝛽0)} − L
]}

exp
(

it⊤
𝜏

L
)]
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= E

[

exp

{
it⊤
𝜏nK

K∑

k=1

∑

i∈k

(
̇𝓁i(𝛽0) − L

)}

exp
(

it⊤
𝜏

L
)]

= E

[

exp

{
it⊤

𝜏

√
nK

Z1

}

exp

(
it⊤

𝜏

√
N

Z2

)]

,

where Z1 = (nK)−1∕2∑K
k=1

∑
i∈k

{
̇𝓁i(𝛽0) − L

}
and Z2 =

√
NL. Subsequently, we consider the

following three cases to prove the convergence of f (t).
Case 1. We first consider the case of N∕(nK)→ 0. Then, we have 𝜏

2nK = (1 + nK∕N)→ ∞.

Note that by a similar analysis technique to that in Lemma 2, we have E(Z1) = 0 and
var(Z1) = O(1). Consequently, we have Z1 = Op(1). This leads to exp

{
it⊤(𝜏

√
nK)−1Z1

}
→p 1.

Accordingly, f (t) shares the same asymptotic limit with E
[
exp

{
it⊤(𝜏

√
N)−1Z2

}]
. Note that

E
[
exp

{
it⊤(𝜏

√
N)−1Z2

}]
→ exp

(
− t2∕2

)
due to the following two reasons: (1) 𝜏2N = (N∕nK +

1) → 1; and (2) Z2 =
√

N(Mn)−1∑M
i=1 n ̇𝓁i(𝛽0){1 + op(1)} = N−1∕2∑N

i=1
̇𝓁i(𝛽0){1 + op(1)}→d

N(0,Σ−1) by the central limit theorem, as n∕N → 0. This finishes the proof of Case 1.
Case 2. We next consider the case of N∕(nK)→ ∞. Because 𝜏

2N = (N∕nK + 1) → 0, and
Z2 →d N(0,Σ), we should have (𝜏

√
N)−1Z2 →p 0 and it leads to E

[
exp{it⊤(𝜏

√
N)−1Z2}

]
→

1. Then, by the dominated convergence theorem, f (t) has the same asymptotic limit as
E
[
exp{it⊤(𝜏

√
nK)−1Z1}

]
. This limit term could be verified to be exp(−t2∕2), due to the following

two reasons: (1) 𝜏2nK = (1 + nK∕N)→ 1; (2) Z1 →d N(0, 1) by the Central Limit Theorem. This
finishes the proof of Case 2.

Case 3. We finally consider the case that N∕(nK)→ 𝜅 for some constant 𝜅 > 0.
We then decompose f (t) into f1(t) + f (t) − f1(t) with f1(t) = E

[
̃Δ2 exp

{
it⊤(𝜏

√
N)−1 Z2

}]
and

f (t) − f1(t) = E
[
( ̃Δ1 − ̃Δ2) exp

{
it⊤(𝜏

√
N)−1Z2

}]
, where ̃Δ1 = E

[
exp

{
it⊤(𝜏

√
nK )−1Z1|

}]
and

̃Δ2 = exp
[
−t⊤Σ−1t∕(2nK𝜏

2)
]
. Since Z1 →d N(0, 1), we then have ̃Δ1 − ̃Δ2 →p 0 conditional

on  . Thus by the dominated convergence theorem, we have f (t) − f1(t) → 0. Conse-
quently, f (t) shares the same asymptotical limit with f1(t). This implies that it suf-
fices to verify that f1(t) → exp(−t⊤Σ−1t∕2). Note that 𝜏

2nK = 1 + 1∕𝜅. Then, we have
̃Δ2 → exp[−t⊤Σ−1t∕{2(1 + 1∕C)}]. Meanwhile, as 𝜏

2N → 1 + 𝜅 and Z2 → N(0, 1), we then
should have E

[
exp

{
it⊤(𝜏

√
N)−1Z2

}]
→ exp{−t⊤Σ−1t∕2(1 + 𝜅)}. It can be verified that f1(t) →

exp
(
−t⊤Σ−1t∕{2(1 + 𝜅)} − t⊤Σ−1t∕[2{1 + 1∕𝜅}]

)
= exp(−t⊤Σ−1t∕2). This completes the proof of

Case 3 and Part 2. Combining the results of Part 1 and Part 2, we accomplish the whole theorem
proof.

B.2 Proof of Proposition 1
To prove Proposition 1, we first verify 𝛽

OS
K − 𝛽0 = Δos − ̄UK with Δos = Op(1∕n). Subsequently, by

Theorem 1, it immediately leads to the asymptotic normality of 𝛽
OS
K .

Recall that 𝛽
OS
K = K−1∑K

k=1
̂

𝛽k,mle. By Taylor’s expansion, we know

̂

𝛽k,mle − 𝛽0 = −
{

n−1
̈𝓁k (𝛽0)

}−1 {n−1
̇𝓁k (𝛽0)

}
+ Δ(k)os {1 + op(1)}.



WANG et al. 31

Here Δ(k)os =
{

n−1
̈𝓁k (𝛽0)

}−1{( ̂𝛽k,mle − 𝛽0)⊤… 𝓁k (𝜃0)( ̂𝛽k,mle − 𝛽0)
}

, and
{
( ̂𝛽k,mle − 𝛽0)⊤ … 𝓁k

(𝜃0)( ̂𝛽k,mle − 𝛽0)
}

is defined similarly to that in Equation (B1). Note that by Lemma 1, we have
̂

𝛽k,mle − 𝛽0 = Op(1∕
√

n), and by Condition (C4), we know that Δ(k)os = Op(1∕n) is the bias term.
Then, it holds that

𝛽

OS
K − 𝛽0 = K−1

K∑

k=1
Δ(k)os − ̄UK = Op(1∕n) − ̄UK ,

where Δos = K−1∑K
k=1Δ

(k)
os . Furthermore, if one requires n2∕N → ∞, then we have Δos =

op(1∕
√

N) = op

{√
1∕(nK) + 1∕N

}
. Because we have verified that {1∕(nK) + 1∕N}−1∕2

̄UK →d

N(0,Σ) in Appendix B.1, this accomplishes the whole proof.

B.3 Proof of Theorem 2
First, we consider the expectation of ̂SE

2
(𝛽K). We have

̂SE
2
(𝛽K) =

c0

K − 1

K∑

k=1

(
U(k) − ̄U + ̄U − ̄UK

) (
U(k) − ̄U + ̄U − ̄UK

)
⊤

= c0

K − 1

{ K∑

k=1
(U(k) − ̄U)(U(k) − ̄U)⊤ − K( ̄U − ̄UK)( ̄U − ̄UK)⊤

}

= c0

K − 1
(A1 − A2),

where A1 =
{∑K

k=1(U(k) − ̄U)(U(k) − ̄U)⊤
}

and A2 = K
{
( ̄U − ̄UK)( ̄U − ̄UK)⊤

}
, and c0 =

n
{
(nK)−1 + N−1}. We next consider E(A1) and E(A2) separately. Given, all U(k)s can be seen

as independent. Then, we derive the following:

E(A1) = E

[

E∗
{ K∑

k=1
(U(k) − ̄U)(U(k) − ̄U)⊤

}]

(B5)

= KE{E∗(U(k) − ̄U)(U(k) − ̄U)⊤} = K
M

E

{ M∑

m=1
(Um − ̄U)(Um − ̄U)⊤

}

,

and we also have

E(A2) = KE
[
E∗

{
( ̄UK − ̄U)( ̄UK − ̄U)⊤

}]
(B6)

= E
{

E∗(U(k) − ̄U)(U(k) − ̄U)⊤
}
= 1

M
E

{ M∑

m=1
(Um − ̄U)(Um − ̄U)⊤

}

.

Combining the above, we have

E
{
̂SE

2
(𝛽K)

}
= c

M
E

{ M∑

m=1
(Um − ̄U)(Um − ̄U)⊤

}
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= n
( 1

nK
+ 1

N

){
n−1Σ − var( ̄U)

}
(B7)

=
( 1

nK
+ 1

N

){
1 + O( n

N
)
}
Σ.

Second, we consider the bias of ̂SE
2
(𝛽K). Together with (A7) and (B7), we have

var( ̄UK) − E
{
̂SE

2
(𝛽K)

}
= (1 + n

N
)var( ̄U) − 1

N
Σ = O( n

N2 )Σ.

By a similar proof technique to that for Lemma 3, we can conclude that ||R1 + R2|| is sufficiently
small compared with ̄UK . Thus, the desired result can be obtained. This completes the proof.

B.4 Proof of Theorem 3
The purpose of this proof is to verify (3). Recall that ̂SE

2
∗(𝛽K) = n(K − 1)−1 (1∕(nK) + 1∕N)

∑K
k=1

(
Û(k) − ̂

̄Uk

)(
Û(k) − ̂

̄Uk

)
⊤

. Then we have

( 1
nK

+ 1
N

)−1
̂SE

2
∗(𝛽K) =

n
K − 1

{ K∑

k=1

(
Û(k) − ̄U

)(
Û(k) − ̄U

)
⊤

− K
(
̂
̄Uk − ̄U

)(
̂
̄Uk − ̄U

)
⊤

}

= nK
K − 1

(B1 − B2),

where B1 = K−1∑K
k=1(Û(k) − ̄U)(Û(k) − ̄U)⊤, and B2 = ( ̂̄Uk − ̄U)⊤

(
̂
̄Uk − ̄U

)
⊤

. To verify
Equation (3), it suffices to prove that nB1 →p Σ, and nB2 →p 0 since K∕(K − 1) → 1. Then we
consider analysing B1 and B2 separately.

It then could be verified that

B1 = K−1
K∑

k=1

(
Û(k) − U(k)

) (
Û(k) − U(k)

)
⊤ + K−1

K∑

k=1

(
U(k) − ̄U

) (
U(k) − ̄U

)
⊤ + 

= B11 + B12 + ,

where B11 = K−1∑K
k=1

(
Û(k) − U(k)

) (
Û(k) − U(k)

)
⊤, B12 = K−1∑K

k=1
(

U(k) − ̄U
) (

U(k) − ̄U
)
⊤, and

 = 2K−1∑K
k=1

(
Û(k) − U(k)

) (
U(k) − ̄U

)
is the cross term. Next, we are going to investigate the

three terms in the following two steps. First, we verify that B12 is the leading term with nB12 →p Σ.
In addition, we prove that B11 and are ignorable terms, more precisely, they are both of the order
op(1∕n).

Step 1. We first show that nB12 →p Σ. Then the consistency can be verified in (1) E(nB12) → Σ
and (2) var(nB12) → 0. We next calculate the expectation and variance separately.

(1) Proof of E(nB12) → Σ: Note that, B12 = A1∕K, where A1 is defined in Appendix B.3. Then
by (B5), we have E(B12) = n−1Σ + O(1∕N)Σ = n−1Σ{1 + o(1)}.

(2) Proof of var(nB12) → 0: Because var(B12) = var{E∗(B12)} + E{var∗(B12)}, we then investi-
gate the two terms respectively. We compute var{E∗(B12)} first. It could be verified that

E∗(B12) = E∗
{
(U(k) − ̄U)(U(k) − ̄U)⊤

}
= 1

M

M∑

m=1
(Um − ̄U)(Um − ̄U)⊤. (B8)
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Take variance on both sides of (B8), by the same technique used in Step (1) of Lemma 2, we have

var{E∗(B12)} = M−1var
{
(Um − ̄U)(Um − ̄U)⊤

}
+

∑

m1≠m2

cov
{
(Um1 − ̄U)(Um2 − ̄U)⊤

}

≤ M−1var
{
(Um − ̄U)(Um − ̄U)⊤

}
(B9)

+ n {2M − (n − 1)}
M2 var

{
(Um − ̄U)(Um − ̄U)⊤

}

≤
M + n {2M − (n − 1)}

M2 E
{
(Um − ̄U)(Um − ̄U)⊤

}2
. (B9)

Here, the first inequality holds because there are 2
∑n−1

m′=1(M −m′) pairs of m1 and m2 when the
covariance is not equal to zero. Furthermore, it could be verified that E

{
(Um − ̄U)(Um − ̄U)⊤

}2
≤

8E
{

UmU⊤

m
}2 = O(1∕n2). By the similar analysis with (A6), (B9) could be rewritten as

var{E∗(B12)} = O(n∕M)O(1∕n2) = o(1∕n2).
We next calculate E {var∗(B12)}. Because var∗(B12) = K−1var∗

{
(U(k) − ̄U)(U(k) − ̄U)⊤

}
, it

could be proved that

E {var∗(B12)} =
1
K

E
{

var∗
{
(U(k) − ̄U)(U(k) − ̄U)⊤

}}

≤
1
K

E
{
(Um − ̄U)(Um − ̄U)⊤

}2 = O
{
(Kn2)−1} = o(1∕n2).

Combining the above results, we have verified that var(nB12) → 0.
Step 2. We next show that nB11 →p 0.
By definition of Û(k), we have Û(k) =

[
{n−1

̈𝓁k (𝛽k)}−1 − {n−1
̈𝓁k (𝛽0)}−1

]{
n−1

̇𝓁k (𝛽k)
}
+

{n−1
̈𝓁k (𝛽0)}−1

{
n−1

̇𝓁k (𝛽k)
}
. Then it could be shown that

Û(k) − U(k) =
[
{n−1

̈𝓁k (𝛽k)}−1 − {n−1
̈𝓁k (𝛽0)}−1

]{
n−1

̇𝓁k (𝛽k)
}

+ {n−1
̈𝓁k (𝛽0)}−1

{
n−1

̇𝓁k (𝛽k) − n−1
̇𝓁k (𝛽0)

}

= U(k1) + U(k2),

where U(k1) =
[
{n−1

̈𝓁k (𝛽k)}−1 − {n−1
̈𝓁k (𝛽0)}−1

]{
n−1

̇𝓁k (𝛽k)
}

, U(k2) = {n−1
̈𝓁k (𝛽0)}−1 {

n−1
̇𝓁k

(𝛽k) − n−1
̇𝓁k (𝛽0)

}
. Consequently, to verify nB11 →p 0, it suffices to prove that

nK−1∑K
k=1U(k1)U⊤

(k1) →p 0 and nK−1∑K
k=1U(k2)U⊤

(k2) →p 0. Then we analysis the two terms
separately.

(1) Proof of nK−1∑K
k=1U(k1)U⊤

(k1) →p 0: Note that, U(k1) could be further re-written

as U(k1) =
[
{n−1

̈𝓁k (𝛽k)}−1 − {n−1
̈𝓁k (𝛽0)}−1

]{
n−1

̇𝓁k (𝛽k) − n−1
̇𝓁k (𝛽0)

}
+

[
{n−1

̈𝓁k (𝛽k)}−1−

{n−1
̈𝓁k (𝛽0)}−1

]
n−1

̇𝓁k (𝛽0). By condition (C4), we have ||U(k1)|| ≤ C maxk 𝜆max(̂Σk)||𝛽k − 𝛽0||2 +

C||n−1
̇𝓁k (𝛽0)||||𝛽k − 𝛽0||. Furthermore, by the same analytical skills used in Lemma 3, it could

be proved that ||K−1∑K
k=1U(k1)U⊤

(k1)|| = Op
(

n−1 {(nK)−1 + N−1} log K
)
= op(1∕n). This infers

nK−1∑K
k=1U(k1)U⊤

(k1) →p 0.
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(2) Proof of nK−1∑K
k=1U(k2)U⊤

(k2) →p 0: Similarly, because ||Uk2|| ≤
{

maxk 𝜆max(̂Σk)
}2||𝛽k −

𝛽0||, we could verify that ||
∑K

k=1U(k2)U⊤

(k2)|| = Op
(

n−1 {(nK)−1 + N−1} log K
)
= op(1∕n).

Combining the two above proofs, we then finish Step 2. Subsequently, by the Cauchy–Schwarz
inequality, we have n→p 0. This completes the proof of (K − 1)−1(nK)B1 →p Σ.

Finally, we calculate B2. By a similar proof technique used in analysing B1, we can con-
clude that B2 = ( ̄UK − ̄U)( ̄UK − ̄U)⊤ + op(1∕n). Then by B6, we have E( ̄UK − ̄U)( ̄UK − ̄U)⊤ =
(nK)−1Σ{1 + o(1)}. As a consequence, it could be shown that E

{
n( ̄UK − ̄U)( ̄UK − ̄U)⊤

}
→ 0,

which leads to nA2 →p 0. The desired results can be obtained. This completes the whole theorem
proof.
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