
Statistica Sinica 33 (2023), 2041-2064
doi:https://doi.org/10.5705/ss.202021.0257

SUBSAMPLING AND JACKKNIFING: A PRACTICALLY

CONVENIENT SOLUTION FOR LARGE DATA ANALYSIS

WITH LIMITED COMPUTATIONAL RESOURCES

Shuyuan Wu1, Xuening Zhu2 and Hansheng Wang1

1Peking University and 2Fudan University

Abstract: Modern statistical analysis often involves large data sets, for which con-

ventional estimation methods are not suitable, owing to limited computational re-

sources. To solve this problem, we propose a novel subsampling-based method with

jackknifing. The key idea is to treat the whole sample as if it were the population.

Then, we obtain multiple subsamples with greatly reduced sizes using simple ran-

dom sampling with replacement. We do not recommend sampling methods without

replacement, because this would incur a significant data processing cost when the

processing occurs on a hard drive. However, such a cost does not exist if the data are

processed in memory. Because subsampled data have relatively small sizes, they can

be comfortably read into computer memory and processed. Based on subsampled

data sets, jackknife-debiased estimators can be obtained for the target parameter.

The resulting estimators are statistically consistent, with an extremely small bias.

Finally, the jackknife-debiased estimators from different subsamples are averaged to

form the final estimator. We show theoretically that the final estimator is consis-

tent and asymptotically normal. Furthermore, its asymptotic statistical efficiency

can be as good as that of the whole sample estimator under very mild conditions.

The proposed method is easily implemented on most computer systems, and thus

is widely applicable.

Key words and phrases: GPU, jackknife, large dataset, subsampling.

1. Introduction

Modern statistical analysis often involves large data sets. However, many re-

searchers operate under limited computational resources, and do not have access

to powerful computation systems, such as a distributed system like Hadoop or

Spark. Thus, how to practically analyze large data sets with limited computa-

tional resources has become a problem of great importance.

To solve this problem, various subsampling methods have been proposed

(Mahoney (2011); Drineas et al. (2011); Ma, Mahoney and Yu (2015); Wang,

Zhu and Ma (2018); Wang (2019); Yu et al. (2022); Ma et al. (2022)). The

Corresponding author: Xuening Zhu, School of Data Science, Fudan University, Shanghai 200433,
China. E-mail: xueningzhu@fudan.edu.cn.

https://doi.org/10.5705/ss.202021.0257
mailto:xueningzhu@fudan.edu.cn

2042 WU, ZHU AND WANG

key idea of most existing methods is to design a novel sampling strategy so

that excellent statistical efficiency can be achieved with small sample sizes. For

example, Ma, Mahoney and Yu (2015) developed a novel method of selecting an

optimal subsample based on leverage scores. Wang, Zhu and Ma (2018) studied

a similar problem and proposed the A-optimality criterion. Yu et al. (2022)

developed an optimal Poisson subsampling approach. Ma et al. (2022) derived

the asymptotic distribution of the sampling estimator based on a linear regression.

Despite their usefulness, these methods suffer from two limitations. First, specific

sampling strategies must be designed carefully for different analysis purposes.

Second, they are computationally expensive. In most cases, the sampling cost is

at least O(N), where N represents the whole sample size.

To overcome these challenges, we have developed a novel method with the

following unique features. First, our method is simple enough to be easily im-

plemented on most practical computer systems. We argue that this simplicity

is particularly relevant and important, because it implies wider applicability.

Second, due to jackknifing, our estimators lead to a significant bias reduction

compared with other methods. As a result, the same asymptotic efficiency can

be achieved with a much reduced subsample size, as long as the number of sub-

samples is sufficiently large. Moreover, our method supports fully automatic and

unified inferences. Most real applications require valid statistical inferences (e.g.,

confidence interval). However, the analytical formula for the asymptotic distri-

bution of the estimator may be too complicated to be derived analytically. Our

proposal is automatic in the sense that the standard errors of various statistics

can be computed automatically without referring to an analytical formula of their

asymptotic distributions. In addition, our proposal is unified in the sense that it

can be readily applied to many different statistics.

Specifically, we have develop a subsampling method with jackknifing. To im-

plement our method, multiple subsamples are obtained by simple random sam-

pling with replacement. For each subsampled data set, a jackknife-debiased esti-

mator is computed for the parameter of interest, after which the estimators are

averaged, yielding the final estimator. We show theoretically that the resulting

estimator is consistent and asymptotically normal. In addition, its statistical effi-

ciency can be asymptotically as good as that of the whole sample estimator under

very mild conditions. This useful property remains valid, even if the subsample

size is very small. The desirable property is mainly attributed to jackknifing. As

a byproduct, a jackknife estimator for the standard error of the proposed esti-

mator can be obtained, enabling automatic statistical inference. For practical

implementation, we develop an algorithm based on a graphical processing unit

SUBSAMPLING AND JACKKNIFING 2043

(GPU), which empirical show is extremely computationally efficient. Extensive

numerical studies are presented to demonstrate the finite-sample performance.

Despite its usefulness, the proposed method suffers from several limitations.

The main limitation is that it is computationally less efficient than the one-pass

full-sample mean estimators computed by distributed approaches (Suresh et al.

(2017)). However, the propose method is a practically more convenient alterna-

tive under the following two important situations. The first is when the whole

sample size N is extremely large. In this case, a significant cost is incurred when

processing the whole sample (e.g., computing the one-pass full-sample mean).

This is particularly true if no distributed computation system is available. How-

ever, for most practical data analysis, the demand for estimation precision is lim-

ited, and it is more important to control processing costs, leading to a trade-off

between the two. Accordingly, we do not expect our method to be implemented

with a very large subsample size n and a very large number of subsamples K.

Instead, it should be implemented with reasonably large n and K, as long as the

desired statistical precision can be achieved.

The second situation is when automatic statistical inferences are required.

In this case, if the one-pass full-sample mean is used, then an analytical formula

for the asymptotic distribution of the estimator has to be derived manually. It is

then preferable to have an automatic and unified solution for statistical inference.

The rest of the paper is organized as follows. Section 2 presents the proposed

estimators and their asymptotic properties. Numerical studies are presented in

Section 3, including the GPU-based algorithm, simulation experiments, and a real

data set analysis. Finally, Section 4 concludes the paper. All technical details

are relegated to the Supplementary Material.

2. The Methodology

2.1. Model and notation

Let Xi be an independent random variable observed from the ith subject,

where 1 ≤ i ≤ N and N is the whole sample size. Let S = {1, . . . , N} be the

index set of the whole sample, and let µ be one particular moment about Xi.

For simplicity, we assume µ = E(Xi) is a scalar. The theory presented here can

be extended easily to a more general situation with multivariate moments and

M estimators. Let θ = g(µ) be the parameter of interest, where g(·) is a known

nonlinear function. We assume that g(·) is sufficiently smooth. To estimate θ,

one can use a sample moment estimator θ̂ = g(µ̂), where µ̂ = N−1
∑

i∈SXi.

For convenience, we refer to θ̂ as the whole sample estimator to emphasize

2044 WU, ZHU AND WANG

the fact that this is an estimator computed based on the whole sample. The

merit of θ̂ is that it offers excellent statistical efficiency. However, it may be

difficult to compute if the whole sample size N is too large. This is particularly

true if researchers have limited computational resources. Accordingly, we must

consider other estimation methods that are more computationally feasible. Here,

we study one type of subsampling method (Mahoney (2011); Drineas et al. (2011);

Ma, Mahoney and Yu (2015); Wang, Zhu and Ma (2018); Wang (2019); Yu et al.

(2022); Ma et al. (2022)) as an excellent and practical solution.

Let n be the subsample size, which is typically much smaller than N . Let K

be the number of subsamples. Write Sk = {i(k)1 , . . . , i
(k)
n } ⊂ S as the kth subsam-

ple set, where i
(k)
m (for any 1 ≤ m ≤ n, 1 ≤ k ≤ K) are generated independently

from S by the method of simple random sampling with replacement. In other

words, conditional on S, i
(k)
m are independently and identically distributed (i.i.d.)

with probability P(i
(k)
m = j) = N−1, for any j ∈ S. Accordingly, a moment estima-

tor based on Sk can be computed as θ̂(k) = g
(
µ̂(k)

)
, where µ̂(k) = n−1

∑
i∈Sk Xi.

One can then combine these subsample estimators to form a more accurate one

as θ̂
SOS

= K−1
∑K

k=1 θ̂
(k). This is referred to as a subsample one-shot (SOS) esti-

mator. It is similar to the so-called one-shot estimator developed for distributed

systems (Mcdonald et al. (2009); Zinkevich et al. (2011); Zhang, Duchi and Wain-

wright (2013)). However, the key difference is that the subsamples used by the

standard one-shot estimator should not overlap. In contrast, the subsamples used

by our proposed subsampling method are allowed to partially overlap.

2.2. Variance and bias analysis of the SOS estimator

To motivate our method, we offer an informal analysis of the bias and variance

of the SOS estimator θ̂
SOS

. Formal theoretical results are provided in Section 2.4.

Specifically, using Taylor’s expansion, we can approximate θ̂(k) as

θ̂(k) ≈ θ + ġ(µ)
(
µ̂(k) − µ

)
+

1

2
g̈(µ)

(
µ̂(k) − µ

)2
,

where ġ(µ) and g̈(µ) are the first- and second-order derivatives of g(µ), respec-

tively, with respect to µ. Accordingly, we have

θ̂
SOS

=
1

K

K∑
k=1

θ̂(k) ≈ θ +
ġ(µ)

K

K∑
k=1

(
µ̂(k) − µ

)
+
g̈(µ)

2K

K∑
k=1

(
µ̂(k) − µ

)2
. (2.1)

By equation (2.1), we know that var(θ̂
SOS

) can be approximated by the variance

of ġ(µ)K−1
∑K

k=1

(
µ̂(k) − µ

)
. Let σ̂2 = N−1

∑
i∈S(Xi − µ̂)2. With a slight abuse

SUBSAMPLING AND JACKKNIFING 2045

of notation, we use S to represent the information contained in the whole sam-

ple, that is, the σ-field generated by {X1, . . . , XN}. Recall that, conditional on

S, Xi are i.i.d. for any i ∈ Sk and 1 ≤ k ≤ K. We then have E(µ̂(k)|S) =

n−1E
(∑

i∈Sk Xi|S
)

= µ̂ and var
(
µ̂(k)|S

)
= n−2 var

(∑
i∈Sk Xi|S

)
= n−1σ̂2. As-

sume that the second moment of X1 is finite with σ2 = var(X1). We then have

E
{

var
(
θ̂

SOS
|S
)}
≈ ġ(µ)2

K
E
{

var
(
µ̂(k)|S

)}
≈ ġ(µ)2

nK
σ2,

var
{
E
(
θ̂

SOS
|S
)}
≈ ġ(µ)2 var

(
µ̂− µ

)
=
ġ(µ)2

N
σ2.

(2.2)

From equation (2.2), we find that var(θ̂
SOS

) can be approximated by τ1{1/N
+1/(nK)}, with τ1 = ġ(µ)2σ2. Under the condition nK � N, we then determine

that the variance of the subsample estimator can be further approximated by

τ1/N , which is the asymptotic variance of the whole sample estimator θ̂.

Next, we study the bias of θ̂
SOS

. We define the bias of Tn as Bias(Tn) =

E(Tn)− θ, for any estimator Tn of θ. Then, by equation (2.1), we have

Bias
(
θ̂

SOS

)
= E

(
1

K

K∑
k=1

θ̂(k)

)
− θ = E

(
θ̂(k)
)
− θ ≈ g̈(µ)

2n
σ2 +

g̈(µ)

2N
σ2. (2.3)

The leading term of Bias(θ̂
SOS

) is given by τ2/n, with τ2 = g̈(µ)σ2/2. Unfortu-

nately, it does not improve as K increases. This indicates that the bias of θ̂
SOS

is

of order O(n−1), and is a smaller order term compared with θ̂− θ = Op(1/
√
N),

as long as n�
√
N . This condition seems to be quite reasonable for a distributed

system (Huang and Huo (2019); Jordan, Lee and Yang (2019)), in which, K is

the number of distributed computers. As a result, K is typically much smaller

than n, where n is the subsample size allocated to each distributed computer.

However, this condition could be problematic for a subsampling method. In this

case, K is the total number of subsamples, and could be very large. In contrast,

for computational convenience, the subsample size n could be much smaller than√
N . This makes the bias introduced in equation (2.3) possibly non-negligible. To

fix this problem, we are motivated to search for an improved estimator for θ with

a greatly reduced bias. In this regard, the jackknife method is well known to re-

duce the bias of estimators (Quenouille (1949); Efron and Stein (1981); Cameron

and Trivedi (2005)). However, the performance of the jackknife method in the

subsampling scenario is not clear. This leads to the novel jackknife estimators

presented in the next subsection.

2046 WU, ZHU AND WANG

2.3. Jackknife estimators

This subsection has two objectives. The first is to develop a jackknife de-

biased subsample (JDS) estimator for θ. The second is to propose a jackknife

standard error (JSE) estimator for the JDS estimator.

First, we develop the JDS estimator to reduce the estimation bias. To this

end, we define a jackknife estimator θ̂
(k)
−j for the kth subsample as follows:

θ̂
(k)
−j = g

(
µ̂
(k)
−j

)
, where µ̂

(k)
−j =

1

n− 1

i 6=j∑
i∈Sk

Xi.

By similar analysis to that for equation (2.1), we know that Bias
(
θ̂
(k)
−j
)

is ap-

proximately equal to τ2/(n − 1). Then, n−1
∑

j∈Sk Bias
(
θ̂
(k)
−j
)
≈ τ2/(n − 1), and

E
(
n−1

∑
j∈Sk θ̂

(k)
−j− θ̂(k)

)
≈ τ2/{n(n−1)}. This inspires an estimator for the bias

given by B̂ias
(k)

= (n− 1)n−1
∑

j∈Sk θ̂
(k)
−j − (n− 1)θ̂(k). Accordingly, we propose

a bias-corrected estimator for the kth subsample as θ̂(k)
JDS

= θ̂(k)− B̂ias
(k)
. There-

after, θ̂(k)
JDS

can be averaged across different k. As a result, we obtain the final JDS

estimator θ̂
JDS

= K−1
∑K

k=1 θ̂
(k)
JDS

. Next, we rigorously verify that Bias(θ̂
JDS

) is

much smaller than the bias of θ̂
SOS

. Specifically, Bias(θ̂
JDS

) = O(1/n2) +O(1/N)

and Bias(θ̂
SOS

) ≈ τ2/n; see equation (2.3). Furthermore, we can prove theoreti-

cally that the asymptotic variance of θ̂
JDS

remains the same as that of the whole

sample estimator. As a result, assuming that K is sufficiently large, excellent

statistical efficiency can be achieved by θ̂
JDS

with a very small subsample size n.

In addition to bias correction, the jackknife method also serves as an excellent

estimator for the standard error, that is, the standard deviation of the JDS

estimator θ̂
JDS

. The basic idea is as follows. Recall that by equation (2.2), we

know that

var(θ̂
SOS

) ≈ ġ(µ)2σ2
(

1

nK
+

1

N

)
. (2.4)

Because N,n, and K are all known to the user, the key objective here is to

estimate the unknown parameter τ1 = ġ(µ)2σ2. Moreover, by the definition of

the jackknife estimator and Taylor’s expansion, we have

θ̂
(k)
−j − θ̂

(k) ≈ ġ(µ)
(
µ̂
(k)
−j − µ̂

(k)
)

=
ġ(µ)

n− 1

(
µ̂(k) −Xj

)
for any j ∈ Sk and 1 ≤ k ≤ K. We know immediately that

SUBSAMPLING AND JACKKNIFING 2047

E

{(
θ̂
(k)
−j − θ̂

(k)
)2}

= E

[
E

{(
θ̂
(k)
−j − θ̂

(k)
)2 ∣∣∣S}] ≈ ġ(µ)2σ2

n(n− 1)
=

τ1
n(n− 1)

,

which is closely related to the unknown parameter τ1 in equation (2.4). Note

that the sample mean of (θ̂
(k)
−j − θ̂(k))2 across different j and k is a reasonable

approximation of E{(θ̂(k)−j − θ̂(k))2}. This inspires the following JSE estimator ŜE:

ŜE
2

=

(
1

K
+
n

N

)
1

K

K∑
k=1

∑
j∈Sk

(
θ̂
(k)
−j − θ̂

(k)
)2
.

We prove theoretically that ŜE
2

is a consistent estimator of var(θ̂
JDS

). In addition,

var(θ̂
JDS

)/ var(θ̂
SOS

) = 1 + o(1). Consequently, ŜE
2

is also a consistent estimator

of var(θ̂
SOS

).

2.4. Theoretical properties

In this subsection, we study the theoretical properties of the three estimators

(i.e., the SOS, JDS, and JSE estimators). To this end, we need the following

standard technical conditions.

(C1) (Sub-Gaussian Distribution) Assume Xi follow a sub-Gaussian distri-

bution, that is, there exist positive constants C and ν such that P (|Xi| >
t) ≤ C exp{−νt2}, for every t > 0.

(C2) (Smoothness condition) Define g(k)(·) as the kth order derivative func-

tion of g(·), and assume g(k)(·) is a continuous function, for k ≤ 8.

(C3) (Subsampling condition) As N → ∞, the subsample size n → ∞. In

addition, assume that n < N,N = o(n4), and logK = o(
√
n).

Condition (C1) is a classical and flexible assumption on covariates (Jordan, Lee

and Yang (2019); Zhu et al. (2022)). Condition (C2) requires the g-function

to be sufficiently smooth so that Taylor’s expansion can be obtained around µ.

We require a slightly stronger condition, because we derive the asymptotic bias

in a more explicit form. The condition can be relaxed to requiring g(·) to be a

fourth continuously differentiable function to guarantee the asymptotic normality

(Wu (1986); Lehmann and Casella (2006)). Lastly, Condition (C3) states the

relationships between n,N , and K. It requires that the subsample size should

be large enough to facilitate an asymptotic analysis of higher order terms. In

addition, we require logK = o(
√
n) to guarantee a uniform convergence for all

subsamples, which is easily satisfied in practice.

2048 WU, ZHU AND WANG

We next consider how to understand the asymptotic behavior of various

subsample estimators without finite moment constraints. Inspired by the asymp-

totic theory of Shao (2003), we adopt a Taylor expansion approach. Consider

θ̂
SOS

as an example. By Taylor’s expansion, we have θ̂
SOS

= K−1
∑K

k=1 θ̂
(k) =

K−1
∑K

k=1 g(µ̂(k)) = θ+∆̂(1)
SOS

+∆̂(2)
SOS

+O, where ∆̂(1)
SOS

= ġ(µ)K−1
∑K

k=1(µ̂
(k)−µ),

∆̂(2)
SOS

= K−1
∑K

k=1

{
g̈(µ) (µ̂(k)−µ)2/2 + g(3)(µ)(µ̂(k)−µ)3/6

}
, and O represents

for some higher order terms. As discussed informally in Section 2.2, this suggests

that the asymptotic behavior of θ̂
SOS
− θ can be fully determined by ∆̂(1)

SOS
and

∆̂(2)
SOS

. Here, ∆̂(1)
SOS

is unbiased and mainly contributes to the variance, whereas

∆̂(2)
SOS

has ignorable variance and mainly controls the bias. Accordingly, we can

understand the asymptotic performance of the bias of θ̂
SOS

by E(∆̂(2)
SOS

) and the

variance of θ̂
SOS

’s variance by var(∆̂(1)
SOS

). Specifically, we have the following the-

orem.

Theorem 1. Assume conditions (C1)–(C3) hold. Then we have θ̂
SOS
− θ =

∆̂(1)
SOS

+ ∆̂(2)
SOS

+ O, with E(∆̂(1)
SOS

) = 0, var(∆̂(2)
SOS

) = o
{

1/(nK) + 1/N
}

, O =

op
(
1/n+

√
1/(nK) + 1/N

)
, and

E(∆̂(2)
SOS

) = τ2

(
1

n
+

1

N

)
+ o

(
1

n

)
(2.5)

var(∆̂(1)
SOS

) = τ1

(
1

nK
+

1

N

)
+ o

(
1

nK
+

1

N

)
. (2.6)

From Theorem 1, we first find that the higher order terms O may be ignorable

compared with ∆̂(1)
SOS

and ∆̂(2)
SOS

. In addition, the asymptotic bias behavior of

θ̂
SOS

is decided by ∆̂(2)
SOS

, whereas the asymptotic variance behavior of θ̂
SOS

is

determined by ∆̂(1)
SOS

. Then, by equation (2.5), we know that the bias of ∆̂(2)
SOS

is

affected by both N and n. The 1/n and 1/N terms represent the asymptotic bias

due to the subsampling and overall sampling errors, respectively. The leading

term of the variance for ∆̂(1)
SOS

also includes two quantities, namely, the 1/(nK)

and 1/N terms. The first term is due to the subsampling error, and the second

term is due to the overall sampling error. Recall that the asymptotic variance

of the whole sample estimator θ̂ is approximately equal to τ1/N. Then, for the

SOS estimator to achieve the same asymptotic efficiency as θ̂, we must have

nK/N →∞. Unfortunately, the subsampling error term of Bias(∆̂(2)
SOS

) is O(1/n),

which does not reduce at all as K →∞. Consequently, we need to have n�
√
N

so that the asymptotic bias is of o(1/
√
N). Otherwise, the SOS estimator can

never be asymptotically as efficient as the whole sample estimator θ̂. Similarly to

θ̂
SOS

, we can express θ̂
JDS

using Taylor’s expansion as θ̂
JDS

= ∆̂(1)
JDS

+ ∆̂(2)
JDS

+O,

SUBSAMPLING AND JACKKNIFING 2049

a detailed expression is given in Appendix B. Define τ3 = g(3)(µ)µ3/6, τ4 =

g(4)(µ)σ4/8, and µ3 = E(Xi − µ)3. We next analyze the properties of the JDS

estimator in the following theorem.

Theorem 2. Assume conditions (C1)–(C3) hold. Then, θ̂
JDS
− θ = ∆̂(1)

JDS
+

∆̂(2)
JDS

+ O, with E(∆̂(1)
JDS

) = 0, var(∆̂(2)
JDS

) = o
{

1/(nK) + 1/N
}

, O = op
(
1/n2 +

1/N +
√

1/(nK) + 1/N
)
, and

E(∆̂(2)
JDS

) =
τ2
N

+
τ3 + τ4
n2

+ o

(
1

N
+

1

n2

)
(2.7)

var(∆̂(1)
JDS

) = τ1

(
1

nK
+

1

N

)
+ o

(
1

nK
+

1

N

)
. (2.8)

Comparing (2.5) and (2.7), we find that for the JDS estimator, the bias term due

to the subsampling error is substantially reduced to O(1/n2). In contrast, that of

the SOS estimator is much larger, and is of order O(1/n). Comparing (2.6) and

(2.8), we conclude that the leading terms of the variances of the two estimators

are identical, and can be estimated consistently using the proposed JSE estimator

ŜE. Its asymptotic property is given as follows.

Theorem 3. Define τ2 = τ1 {1/(nK) + 1/N} , and further assume conditions

(C1)–(C3) hold. The JSE estimator is then ratio consistent for τ , that is, ŜE
2
/τ2

→p 1, where “→p” stands for “convergence in probability.”

Lastly, for a valid asymptotic inference, we need to study the asymptotic dis-

tributions of the JDS estimator θ̂
JDS

and the SOS estimator θ̂
SOS

. Consequently,

we develop the following theorem to establish the asymptotic normality for both

θ̂
JDS

and θ̂
SOS

.

Theorem 4. Assume conditions (C1)–(C3) hold. The JDS estimator θ̂
JDS

is

then asymptotically normal, with
(
θ̂

JDS
− θ
)
/τ →d N(0, 1), where “→d” repre-

sents “convergence in distribution.” If one can impose the stronger condition that

n/N1/2 → ∞, then the SOS estimator θ̂
SOS

is also asymptotically normal with(
θ̂

SOS
− θ
)
/τ →d N(0, 1).

From Theorem 4, we know that the SOS and JDS estimators are both asymptot-

ically normal. However, the technical conditions required by the two estimators

are different. The JDS estimator requires n/N1/4 →∞. This is a condition that

can be very easily satisfied. However, for the SOS estimator, a much stronger

condition (i.e., n/N1/2 → ∞) is required (Huang and Huo (2019); Jordan, Lee

and Yang (2019); Wang et al. (2021)).

2050 WU, ZHU AND WANG

3. Numerical Analysis

3.1. Why sampling with replacement

We aim to develop a GPU-based algorithm for the proposed method when

the data are stored on a hard drive. Thus, it is important to understand the sam-

pling mechanism on the hard drive. In particular, we examine the computational

efficiency of the different sampling mechanisms (i.e., simple random sampling

with replacement and simple random sampling without replacement on a hard

drive) in the following steps:

(1) First, we assume there are N data points (representing a massive data set)

stored on a hard drive. They are displayed in the top left of Figure 1. There

are two columns. The first is the sample ID (ID = 1, 2, 3, 4, 5, . . . , N), and

the second is the variable of interest Y = (Y1, . . . , YN).

(2) Second, to conduct random sampling, we randomly generate an integer be-

tween 1 and N . This determines which data line should be sampled. With-

out loss of generality, assume that the sampled unit is i∗. Then, we read

Yi∗ into memory. (Note that this sampling procedure is a simplified version.

In practice, we cannot access a data line by its sample ID on a hard drive.

Instead, we refer to it according to its physical address on a hard drive.

However, this is also not a straightforward operation). We then update the

index set S0 from S0 = {∅} to S0 = {i∗}.

(3) Third, we conduct random sampling without replacement. To this end, we

generate another integer i∗2 from 1 to N randomly and independently. It is

possible that i∗2 has already been sampled in S0, which leads to duplicated

sampling. To avoid this, i∗2 needs to be compared with every unit in S0 that

has already been sampled. If we find i∗2 ∈ S0 already, then i∗2 needs to be

re-generated. Otherwise, S0 can be updated to S0 := S0 ∪ {i∗2}, and Yi∗2 is

read into memory.

(4) Assume that we need to generate a total of K subsamples of size n. Then,

the size of the index set is about |S0| = O(nK). To avoid duplicated sam-

pling, every sampled unit needs to be compared with every unit in S0. This

leads to a computation cost of order O(nK) for every sampled unit, on av-

erage. The total computation cost is of order O
{

(nK)2
}

, on average, which

is expensive. The process is illustrated in Figure 1.

(5) Lastly, if we conduct random sampling with replacement, we avoid the

need to (a) keep updating S0 and determining whether i∗2 ∈ S0, and (b)

SUBSAMPLING AND JACKKNIFING 2051

length(!!)= # ?

Start
End

Yes

No

ID !
1 !!
… …
$∗ %#∗
… …
& !$

Sample one integer %∗
from 1 to &.

ID !
1 !!
2 !%
3 !&
… …
& !$

A total of & data points are
placed on the hard drive.

An index set
!! = ∅ on
the hard drive

%∗ ∉ !!? No

Yes

Memory

Read)#∗ into memory,
update !! = !! ∪ {%∗}.

data points are
sampled into memory.

)'

)'
…
$∗

…
%#∗

…
…
%#∗

Figure 1. The process for sampling without replacement on a hard drive.

keep updating S1. This makes our proposed method computationally more

efficient.

To summarize, compared with subsampling with replacement, subsampling

without replacement with massive data sets is practically challenging. Therefore,

for massive data sets on a hard drive, we prefer sampling methods with replace-

ment. In this case, no recording and comparison operations are needed. Next, to

further demonstrate this point, we develop an experiment to compare sampling

with and without replacement on a hard drive. To this end, we generate i.i.d.

Xi = (Xi1 , Xi2) from a standard bivariate normal distribution, with N = 109.

2052 WU, ZHU AND WANG

Table 1. Comparison of sampling with and without replacement on a hard drive based
on R = 100 simulation replications for various (n,K) combinations.

n K
TC (s) MSE (×10−4)

µ̂rep µ̂worep µ̂rep µ̂worep

100 50 0.13 0.32 4.04 4.04

100 0.25 0.98 1.95 1.88

200 0.51 3.34 0.91 0.93

500 50 0.29 4.79 0.78 0.79

100 0.60 18.33 0.35 0.35

200 1.17 71.65 0.18 0.18

The parameter of interest is the population mean µ. To estimate µ, the sample

mean is calculated based on the two sampling strategies. We use µ̂rep and µ̂worep
to represent the estimators based on sampling with and without replacement,

respectively. We repeat the experiment R = 100 times. Then, the average mean

square error (MSE) and time cost (TC) for the sampling are reported for both

sampling strategies across R replications. The results are summarized in Table

1.

From Table 1, we draw the following conclusions. First, the MSE values of the

two sampling strategies are comparable, and they both decrease with increasing n

or K. However, the TC values of the two strategies are quite different. Sampling

with replacement is much faster than sampling without replacement. As nK

increases, the gap between the two strategies increases significantly. For instance,

when n = 500 and K = 200, it takes only 1.17 seconds for the sampling with

replacement method to complete the procedure, whereas the time required by

the sampling without replacement method is almost 71.65 seconds.

3.2. An algorithm for a GPU

We next develop a GPU-based algorithm for fast computation. Note that

the proposed method exhibits many theoretically and practically useful prop-

erties. Theoretically, it guarantees the statistical efficiency of the subsample

estimators with small subsample sizes. Practically, it is simple, automatic, and

flexible. However, the associated computation cost is expensive, because the new

method requires subsampling K times and jackknifing n times for each subsam-

ple. Accordingly, its implementation on a central processing unit (CPU) might

be inefficient, because a standard CPU usually has a limited number of compu-

tation cores. For example, the MacBook Pro (13-inch, 2020) uses an Intel Core

i5 processor with only four cores. In contrast, a standard GPU may hold tens of

SUBSAMPLING AND JACKKNIFING 2053

Figure 2. Two types of communication cost for a GPU system.

thousands of cores. Accordingly, GPUs are extremely powerful tools for parallel

computation (Krüger and Westermann (2005); Che et al. (2008)). Furthermore,

our method (particularly the jackknifing part) is highly suitable for parallel com-

putation. This inspires us to develop a GPU-based algorithm for the proposed

method.

A standard GPU system has two unique features. To make full use of its

computational power, we need to take both features into consideration. The first

feature of the GPU system is that it suffers from two types of communication

cost; see Figure 2. The first type refers to the time cost required to transfer data

from the hard drive to the CPU memory. This is a standard communication cost

that is essentially required by any computation system. For our algorithm, this

type of cost is primarily due to subsampling. The second type of communication

cost refers to the time cost required to transfer data from the CPU memory to

the GPU memory. The main purpose of transferring data from the CPU memory

to the GPU memory is to prepare the data for the parallel execution of the

jackknifing. Consequently, we consider that this part of the communication cost

is mainly due to jackknifing. Note that current GPU architectures do not allow

the GPU to directly read data from the hard drive. As a result, a good algorithm

should simultaneously minimize both types of communication costs. Multiple

communication between the hard drive, CPU memory and GPU memory should

be avoided.

The second unique feature is that GPU systems are extremely suitable for

tensor-type parallel computation, which makes full use of the parallel computa-

tion power of a GPU system. This suggests that the jackknifing computation

should be formulated into a tensor-type computation problem. Specifically, we

develop a three-step algorithm to implement the proposed method. The process

is shown in Figure 3.

First, we obtain the kth subsample Sk ⊂ S from the hard drive, and place

it in the CPU memory. With a slight abuse of notation, we assume that, Xi is

2054 WU, ZHU AND WANG

Figure 3. A graphical illustration of the proposed GPU algorithm.

Algorithm 1. The GPU algorithm.

Input: Data X1, . . . , XN on a hard drive, Xi ∈ Rp;
g(·): the function of interest of the moment;
n: the subsample size; K: the number of subsamples;

Output: A JDS estimator θ̂
JDS

and a JSE estimator ŜE.
for k ← 1 to K do subsampling

Generate Sk ⊂ S, and place the n× p matrix Xk into the GPU memory;
Compute θ̂(k) ← g(µ̂(k)) in the GPU memory;
Generate an n× p× n tensor Xk in the GPU memory;

Map the function g(·) to each channel of Xk, which leads to {θ̂(k)−j , j ∈ Sk};
Compute θ̂(k)

JDS
= θ̂(k) − (n− 1)

{
n−1

∑n
j=1 θ̂

(k)
−j − θ̂(k)

}
and

ŜE
2

(k) =
∑

j∈Sk

(
θ̂
(k)
−j − θ̂(k)

)2
in the GPU memory;

end
Compute θ̂

JDS
= K−1

∑K
k=1 θ̂

(k)
JDS

and

ŜE
2

= (1/K + n/K)K−1
∑K

k=1 ŜE
2

(k) in the GPU memory;

return θ̂
JDS

and ŜE
2
.

a p-dimensional vector, for any i ∈ S. Next, we formulate the kth subsample

into an n × p matrix format as Xk = [Xi, i ∈ Sk] ∈ Rn×p. We pass Xk to

the GPU memory and replicate Xk n times to construct a three-dimensional

tensor Xk =
[
Xk, . . . ,Xk

]
∈ Rn×p×n. Next, we define a function to compute the

intended statistics with jackknifing. We map this function to different channels

of Xk, where each Xk represents one channel of Xk. By doing so, the jackknifing

computation can be executed by the GPU system in a parallel fashion. We

collect the computation results from each channel, and reduce them to the desired

statistics θ̂
(k)
JDS and ŜE

2

(k) =
∑

j∈Sk
(
θ̂
(k)
−j − θ̂(k)

)2
for the kth subsample. Then, we

obtain the final estimators. This leads to the entire GPU algorithm. The details

are provided in Algorithm 1.

SUBSAMPLING AND JACKKNIFING 2055

3.3. The communication and computation cost

To evaluate the finite-sample performance of the proposed method, we present

a number of numerical experiments. We first consider how to generate the

whole sample with a very large N = 109. For every 1 ≤ i ≤ N , we gener-

ate an i.i.d. two-dimensional random variable Xi = (Xi1, Xi2)
> from a bivari-

ate normal distribution with mean zero and covariance Σ = {σij}2×2, where

σ11 = 25, σ12 = σ21 = 10, and σ22 = 5. We then define the parameter of interest

as the correlation coefficient Corr(Xi1, Xi2), as follows:

θ = Corr(Xi1, Xi2) =
Cov(Xi1, Xi2)√
var(Xi1) var(Xi2)

=
2√
5
.

This parameter is a complex nonlinear function of various moments about Xi.

Once the whole sample is generated, it is placed as a single file on the hard

drive, requiring approximately 38.3 GB, which is clearly too large for the CPU

memory. Once the data are stored on the hard drive, they are fixed for the

remainder of the simulation experiments. In other words, we do not update the

whole sample data set on the hard drive across different simulation replications.

For a reliable evaluation, we replicate the subsequent experiment M = 1000

times. All computations are performed using TensorFlow 2.2.0 on a single GPU

device (NVIDIA Tesla P100).

In this subsection, we focus on performance in terms of the time cost. We

study both the communication cost and the computation cost. The communica-

tion cost can be divided further into two parts. The first part is the time cost

required for transferring data from the hard drive to the CPU memory. The

second part is the time cost required for transferring data from the CPU memory

to GPU memory. Next, we vary the subsample size n from 100 to 3,000 and K

from 10 to 200. We use S(m)
k ⊂ S to represent the kth subsample obtained in

the mth simulation replication. The time cost for obtaining S(m)
k is recorded as

T
(m)
1k . Based on S(m)

k , we obtain the matrix X
(m)
k . We then transfer X

(m)
k from

the hard drive to the CPU memory, where the associated time cost is recorded

as T
(m)
2k . The computation cost required for computing θ̂

JDS
and ŜE is given by

T
(m)
3k . Consequently, the total time cost is given by T

(m)
k = T

(m)
1k + T

(m)
2k + T

(m)
3k .

Their averages are obtained as T1 = M−1
∑

k,m T
(m)
1k , T2 = M−1

∑
k,m T

(m)
2k , and

T3 = M−1
∑

k,m T
(m)
3k . Next, we examine their relationships with both K and n.

The detailed results are given in Figure 4. All types of time cost increase

as the number of subsamples K increases. In particular, the communication

cost required by the subsampling (i.e., T1) is substantially larger than the other

2056 WU, ZHU AND WANG

0 500 1 500 2 500

−
4

−
3

−
2

−
1

0
1

2
3

n

lo
g
(T

1
)

K = 10

K = 50

K = 200

0 500 1 500 2 500

−
6

−
5

−
4

−
3

−
2

n

lo
g
(T

2
)

0 500 1 500 2 500

−
5

−
4

−
3

−
2

−
1

n

lo
g
(T

3
)

Figure 4. The log-transformed time cost for different (n,K) combinations with K =
10, 50 and 200. The communication cost due to subsampling T1 is given in the left
panel. The communication cost due to jackknifing T2 is reported in the middle panel.
The computation cost T3 is presented in the right panel. The reported time costs (in
log-scale) are averaged based on M = 1000 simulations.

two types of time cost. Comparatively, the communication cost required by the

jackknifing (i.e., T2) is the smallest. Note that although T3 is significant in a

CPU-only system, it is not significant in a GPU system. To understand this

idea, consider the case of K = 50 and n = 3000. Here T1 = 1.917 s, T2 = 0.017 s

and T3 = 0.057 s. In addition, the middle and right panels of Figure 4 show

that for a fixed total subsample size K, T2 and T3 remain almost unchanged as

n increases. This result demonstrates the excellent parallel capability of a GPU-

based system, and suggests that better computation efficiency can be achieved

by setting the subsample size n to be as large as possible, given the amount of

computer memory.

Next, we demonstrate the computational advantage of a GPU system. To

this end, we define T (m)
GPU

as the total time cost required by the mth simulation

replication, except for the communication cost due to subsampling (such a cost is

required by any computation system). We then execute the same algorithm on a

CPU-only system (in our case, TensorFlow 2.2.0 can also be executed on a CPU-

only system). This leads to the total time cost, except for the communication

cost due to subsampling required by the CPU-only system, which is recorded

as T (m)
CPU

. We compute their ratio for the mth replication as R(m) = T (m)
GPU

/T (m)
CPU

,

and define the averaged ratio as AR = M−1
∑M

m=1R
(m). The relationships of

the log-transformed AR values for different (n,K) combinations are reported in

Figure 5, which shows that the log(AR) values are always smaller than zero.

This suggests that the computational time cost required by a GPU-based system

SUBSAMPLING AND JACKKNIFING 2057

0 500 1 000 1 500 2 000 2 500 3 000

−
5

−
3

−
1

n

lo
g
 (

A
R

)

K = 10

K = 50

K = 200

Figure 5. Comparison of the computation efficiency between a GPU system and a CPU
system. The AR is reported in log-scale based on M = 1000 simulation replications. The
numbers of subsamples are fixed to K = 10, 50, and 200.

is always smaller than that required by a CPU-only system, on average. In

fact, the reported log(AR) values seem to be rather insensitive to the number

of subsamples (i.e., K). Furthermore, for a fixed number of subsamples K, the

log(AR) value decreases as the subsample size n increases. This is because a larger

n requires a higher computation cost. Accordingly, the parallel computational

power of a GPU system can be better demonstrated. For instance, considering

the case with K = 50 and n = 3000, the averaged time cost of the GPU system

is approximately 0.074 s, while that of the CPU system is approximately 5.191 s.

The corresponding AR value is AR = 0.014. This suggests that the computation

cost required by a GPU system is only approximately 1.4% that of a CPU system,

on average.

3.4. Simulation results of the JSE estimator

In this subsection, we focus on the finite-sample performance of the JSE

estimator ŜE. To this end, we follow the simulation setup in the previous subsec-

tion. Note that the data on the hard drive are generated only once to conserve

time. Once the data are generated, we replicate the experiments M = 1000 times

based on the same whole sample data set. Specifically, for the mth replication,

we obtain an SOS estimator θ̂(m)
SOS

, a JDS estimator θ̂(m)
JDS

, and a JSE estimator

ŜE
(m)

. Define SE
SOS

and SE
JDS

as the respective sample standard deviations of

{θ̂(m)
SOS

,m = 1, . . . ,M} and {θ̂(m)
JDS

,m = 1, . . . ,M}. Accordingly, SE
SOS

and SE
JDS

measure the variabilities of θ̂
SOS

and θ̂
JDS

, respectively, conditional on the whole

sample data set on the hard drive. Because we have N � nK, they should be

good approximations of the true variabilities of θ̂
SOS

and θ̂
JDS

; see Theorems 2

2058 WU, ZHU AND WANG

0.0

0.1

0.2

10 50 200

K

R
A
E

JDS

SOS

(a) n = 100

0.00

0.05

0.10

0.15

0.20

50 100 500
n

R
A
E

(b) K = 100

Figure 6. Box plots of the RAE values for the JDS (light box) and SOS (dark box)
estimators. The left panel corresponds to the case with n fixed to n = 100. The right
panel corresponds to the case with K fixed to K = 100. Each box is summarized based
on M = 1000 simulation replications.

and 3. Next, for the mth replication, we define the relative absolute errors as

RAE(m)
SOS

=
∣∣ŜE

(m)
/SE

SOS
−1
∣∣ and RAE(m)

JDS
=
∣∣ŜE

(m)
/SE

JDS
−1
∣∣, shown in box

plots in Figure 6.

The left panel of Figure 6 shows that, the RAE values of the SOS and JDS

estimators are similar. They both decrease to zero as K increases, suggesting

that a larger K leads to more accurate JSE estimators, under the condition that

n is fixed. Qualitatively similar patterns are also observed for the right panel. We

find that a larger n leads to a more accurate JSE estimation, under the condition

that K is fixed. To summarize, both box plots in Figure 6 suggest that the

proposed JSE estimator is consistent as nK →∞.

3.5. Simulation results of the JDS estimator

Finally, we evaluate the finite-sample performance of the point estimation

θ̂
JDS

and its statistical inference in terms of the confidence interval. For compar-

ison, we also evaluate the SOS estimator θ̂
SOS

. Specifically, following the simu-

lation setup in the previous subsection, we replicate the experiments M = 1000

times based on the same whole data set on the hard drive. For the mth repli-

cation, we calculate the JDS estimator θ̂(m)
JDS

and the corresponding JSE es-

timator ŜE
(m)

. This leads to a total of M estimators {(θ̂(m)
JDS

, ŜE
(m)

) : 1 ≤

SUBSAMPLING AND JACKKNIFING 2059

m ≤ M}. Based on these estimators, the average bias can be computed as

Bias = M−1
∑M

m=1

(
θ̂(m)

JDS
− θ
)
, and the corresponding standard error (SE) can be

obtained. In addition, for each estimator θ̂(m)
JDS

, a (1 − α)th level confidence in-

terval for θ is constructed as CI(m) =
[
θ̂(m)

JDS
− ŜE

(m)
Z1−α/2, θ̂

(m)
JDS

+ ŜE
(m)

Z1−α/2
]
,

where α = 0.05 and Zα represents the lower α quantile of the standard nor-

mal distribution. The empirical coverage probabilities are then also evaluated as

ECP
JDS

= M−1
∑M

m=1 I(θ ∈ CI(m)), where I(·) is the indicator function. The

SOS estimator θ̂
SOS

is evaluated similarly. The detailed results are given in Table

2.

From Table 2, we find that the two estimators perform similarly in terms

of the standard error (SE) for various (n,K) combinations. However, they are

quite different in terms of their bias. The bias of the SOS estimator θ̂
SOS

is much

larger than that of θ̂
JDS

. For example, when n = 200 and K = 200, the bias of

θ̂
SOS

is 4.49 × 10−4, whereas that of θ̂
JDS

is only 1.1 × 10−5. Thus, the former

is approximately 40 times larger than the latter. Moreover, the bias of θ̂
SOS

is

quite comparable to its standard error. As a result, the confidence interval of

θ̂
SOS

is poor, because the corresponding ECP is significantly smaller than 95%.

In contrast, the confidence interval of the JDS estimator is good, because the

corresponding ECP values of θ̂
JDS

are quite close to 95%.

3.6. Real-data analysis

In this subsection, we study a U.S. airline data set, available on the offi-

cial website of the American Statistical Association (ASA). The airline data set

contains approximately 120 million records, and requires approximately 12 GB

of space on a hard drive. Each record contains detailed information for one

commercial flight in the United States between from October 1987 and April

2008. The data set contains 13 continuous variables and 16 categorical vari-

ables. For illustration, we focus on the 13 continuous variables. However, a

significant portion of records are missing for many continuous variables. Only

five have missing rates less than 10%: ActualElapsedTime (actual elapsed time),

CRSElapsedTime (scheduled elapsed time), Distance, DepDelay (departure delay),

and ArrDelay (arrival delay). Therefore, we focus on these five variables. For

more detailed information on the variables, refer to the ASA official website at

http://stat-computing.org/dataexpo/2009.

For each variable, we apply the following signed-log-transformation: log |x| ·
sign(x). This transformation is conducted purely for illustration. Otherwise,

many variables (e.g., ArrDelay) are so heavy tailed that the existence of finite

http://stat-computing.org/dataexpo/2009

2060 WU, ZHU AND WANG

Table 2. Comparison of the SOS estimator θ̂
SOS

and the JDS estimator θ̂
JDS

based on
M = 1000 simulation replications for various (n,K) combinations.

K
SE (×10−3) Bias (×10−3) ECP (%)

θ̂
SOS

θ̂
JDS

θ̂
SOS

θ̂
JDS

θ̂
SOS

θ̂
JDS

n = 50

100 2.964 2.929 2.038 0.050 92.1 95.8

200 2.103 2.077 2.054 0.066 87.8 97.0

500 1.335 1.314 1.956 0.032 73.6 96.8

1,000 0.972 0.959 1.907 0.078 50.8 95.4

n = 100

100 2.068 2.057 0.910 0.029 93.3 96.1

200 1.446 1.437 0.960 0.019 91.7 95.3

500 0.938 0.932 0.877 0.065 84.8 95.6

1,000 0.672 0.667 0.904 0.038 72.9 95.6

n = 200

100 1.436 1.432 0.487 0.029 93.7 94.8

200 1.029 1.025 0.449 0.011 92.9 95.4

500 0.656 0.654 0.442 0.017 89.4 95.0

1,000 0.441 0.440 0.477 0.018 83.3 96.4

Table 3. Descriptive statistics for five continuous variables based on the whole airline
data set after a signed-log transformation. The descriptive statistics are given by the
sample mean (Mean), sample standard deviation (SD), and sample kurtosis (Kurt).

Actual CRS
Distance DepDelay ArrDelay

ElapsedTime ElapsedTime
Mean 4.656 4.670 6.272 0.492 0.236
SD 0.525 0.513 0.777 1.905 2.463

Kurt 2.586 2.597 2.750 2.272 1.594

moments becomes questionable. For each transformed variable, we examine the

mean, standard deviation, and kurtosis. Their whole sample estimators are given

in Table 3. These whole sample estimators are then treated as if they were the

true parameters. Accordingly, simulation experiments can be conducted as in the

previous subsections. In this case, we fixed nK = 6 × 104, with different (n,K)

combinations, and replicated the experiments M = 1000 times. The results are

summarized in Table 4.

From Table 4, we obtain the following interesting observations. First, note

that the sample mean is an exactly unbiased estimator for the mean. Accordingly,

both the SOS and JDS estimators are unbiased. In fact, they are identical in this

case. As a result, both estimators demonstrate identical simulation results, with

SUBSAMPLING AND JACKKNIFING 2061

Table 4. Simulation results for the airline data set based on M = 1000 simulation
replications. The parameters of interest include the mean (Mean), standard deviation
(SD), and kurtosis (Kurt) for signed-log-transformed variables. Both the SOS estimator

θ̂
SOS

and the JDS estimator θ̂
JDS

are compared in terms of the Bias(×10−3), SE(×10−2),
and ECP(%). The nominal ECP level is 95%.

Actual CRS
Distance DepDelay ArrDelay

ElapsedTime ElapsedTime

SOS JDS SOS JDS SOS JDS SOS JDS SOS JDS

n = 300, K = 200

Mean Bias 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.26 0.26

SE 0.22 0.22 0.22 0.22 0.33 0.33 0.77 0.77 0.98 0.98

ECP 94.6 94.6 94.1 94.1 94.1 94.1 94.6 94.6 95.7 95.7

SD Bias 1.30 0.08 1.27 0.07 1.94 0.08 4.24 0.04 4.76 0.02

SE 0.13 0.13 0.13 0.13 0.21 0.21 0.42 0.42 0.37 0.37

ECP 83.9 95.7 84.3 95.6 84.7 96.5 86.2 96.0 78.6 96.5

Kurt Bias 6.82 0.32 6.79 0.25 16.85 0.56 4.31 0.14 7.89 0.02

SE 1.58 1.78 1.71 2.10 1.98 2.12 1.20 1.21 0.49 0.49

ECP 89.6 93.7 89.9 94.7 85.2 94.7 94.3 95.4 66.2 95.2

n = 200, K = 300

Mean Bias 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.26 0.26

SE 0.22 0.22 0.22 0.22 0.33 0.33 0.77 0.77 0.98 0.98

ECP 94.8 94.8 94.2 94.2 94.2 94.2 94.6 94.6 95.7 95.7

SD Bias 1.92 0.08 1.87 0.07 2.88 0.08 6.34 0.02 7.11 0.00

SE 0.13 0.13 0.13 0.13 0.21 0.21 0.41 0.42 0.37 0.37

ECP 71.4 95.3 72.6 95.2 72.5 96.2 70.2 96.2 55.7 96.6

Kurt Bias 10.35 0.25 10.24 0.12 25.42 0.23 6.31 0.19 1.79 0.08

SE 1.51 1.75 1.57 1.98 1.95 2.16 1.20 1.23 0.49 0.50

ECP 85.4 93.8 85.0 94.8 75.3 92.6 93.0 96.1 35.6 95.7

ECP values very close to their nominal level of 95% for all five variables. Second,

for the other two parameters (i.e., standard deviation and kurtosis), the sample

estimators are no longer unbiased. Accordingly, the SOS and JDS estimators

are no longer identical. As expected, both estimators are similar in terms of the

standard error (SE). However, they are quite different in terms of the empirical

bias. Obviously, the bias of the SOS estimator is substantially larger than that

of the JDS estimator for all reported cases. As a result, the ECP values of the

SOS estimator depart significantly from their nominal level of 95%. In contrast,

those of the JDS estimator remain very close to 95%. Consider, for example, the

case of the kurtosis of ArrDelay, with n = 200 and K = 300. The ECP value of

the SOS estimator is only 35.6%. In contrast, that of the JDS is 95.7%.

2062 WU, ZHU AND WANG

4. Conclusion

We have developed a novel statistical method for large data sets. The new

method is designed particularly for practitioners with limited computational re-

sources, and combines the ideas of subsampling and jackknifing. Subsampling

allows our method to work with large data sets. Jackknifing further enhances

this capability by significantly reducing the bias. To implement our method, we

have provided an algorithm developed for GPU systems. We show theoretically

that the resulting estimator can be as good as the whole sample estimator under

very mild regularity conditions. Extensive numerical studies using simulations

and a real data set are presented to demonstrate outstanding performance of the

proposed method.

To conclude this paper, we discuss several interesting topics for future re-

search. First, the statistics considered in this work are relatively simple, repre-

senting nonlinear transformations of various moments. It would be of interest to

develop similar methods for more general M estimators. Second, the data con-

sidered here are collected from independent samples. This makes the theoretical

understanding of the resulting subsample estimator analytically simple. Thus,

similar methods for data with a sophisticated dependence structure (e.g., spatial

temporal data) are also worth studying.

Supplementary Material

The online Supplementary Material contains proofs of all theoretical results

in the main text.

Acknowledgments

We thank the editor, associate editor, and two referees for their insight-

ful comments. Xuening Zhu’s research was supported by the National Natural

Science Foundation of China (nos. 11901105, 71991472, U1811461), Shanghai

Science and Technology Commission Grant (No. 17JC1420200), and Shanghai

Sailing Program for Youth Science and Technology Excellence (19YF1402700).

Hansheng Wang’s research was partially supported by the National Natural Sci-

ence Foundation of China (no. 11831008).

References

Cameron, A. C. and Trivedi, P. K. (2005). Microeconometrics: Methods and Applications. Cam-

bridge University Press, Cambridge.

SUBSAMPLING AND JACKKNIFING 2063

Che, S., Michael, B., Meng, J., Tarjan, D., Sheaffer, J. and Skadron, K. (2008). A performance

study of general-purpose applications on graphics processors using cuda. Journal of Parallel

and Distributed Computing 68, 1370–1380.

Drineas, P., Mahoney, M. W., Muthukrishnan, S. and Sarlós, T. (2011). Faster least squares

approximation. Numerische Mathematik 117, 219–249.

Efron, B. and Stein, C. (1981). The jackknife estimate of variance. The Annals of Statistics 9,

586–596.

Huang, C. and Huo, X. (2019). A distributed one-step estimator. Mathematical Programming

174, 41–76.

Jordan, M. I., Lee, J. D. and Yang, Y. (2019). Communication-efficient distributed statistical

inference. Journal of the American Statistical Association 114, 668–681.

Krüger, J. and Westermann, R. (2005). Linear algebra operators for GPU implementation of

numerical algorithms. In ACM SIGGRAPH 2005 Courses, 234–es.

Lehmann, E. L. and Casella, G. (2006). Theory of Point Estimation. Springer Science & Business

Media, Berlin.

Ma, P., Chen, Y., Zhang, X., Xing, X., Ma, J. and Mahoney, M. W. (2022). Asymptotic analysis

of sampling estimators for randomized numerical linear algebra algorithms. The Journal of

Machine Learning Research 23, 7970–8014.

Ma, P., Mahoney, M. W. and Yu, B. (2015). A statistical perspective on algorithmic leveraging.

The Journal of Machine Learning Research 16, 861–911.

Mahoney, M. W. (2011). Randomized algorithms for matrices and data. Foundations and

Trends R© in Machine Learning 3, 123–224.

Mcdonald, R., Mohri, M., Silberman, N., Walker, D. and Mann, G. S. (2009). Efficient large-

scale distributed training of conditional maximum entropy models. In Advances in Neural

Information Processing Systems, 1231–1239.

Quenouille, M. H. (1949). Approximate tests of correlation in time-series. Journal of the Royal

Statistical Society. Series B (Methodological) 11, 68–84.

Shao, J. (2003). Mathmetical Statistics. Springer, New York.

Suresh, A. T., Felix, X. Y., Kumar, S. and McMahan, H. B. (2017). Distributed mean estimation

with limited communication. In International Conference on Machine Learning PMLR 70,

3329–3337.

Wang, H. (2019). More efficient estimation for logistic regression with optimal subsamples.

Journal of Machine Learning Research 20, 1–59.

Wang, F., Zhu, Y., Huang, D., Qi, H. and Wang, H. (2021). Distributed one-step upgraded

estimation for non-uniformly and non-randomly distributed data. Computational Statistics

& Data Analysis 162, 107265.

Wang, H., Zhu, R. and Ma, P. (2018). Optimal subsampling for large sample logistic regression.

Journal of the American Statistical Association 113, 829–844.

Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis.

The Annals of Statistics 14, 1261–1295.

Yu, J., Wang, H., Ai, M. and Zhang, H. (2022). Optimal distributed subsampling for maxi-

mum quasi-likelihood estimators with massive data. Journal of the American Statistical

Association 117, 265–276.

Zhang, Y., Duchi, J. C. and Wainwright, M. J. (2013). Communication-efficient algorithms for

statistical optimization. The Journal of Machine Learning Research 14, 3321–3363.

2064 WU, ZHU AND WANG

Zhu, X., Pan, R., Wu, S. and Wang, H. (2022). Feature screening for massive data analysis by

subsampling. Journal of Business & Economic Statistics 40, 1892–1903.

Zinkevich, M., Weimer, M., Smola, A. J. and Li, L. (2011). Parallelized stochastic gradient

descent. In Advances in Neural Information Processing Systems 23, 2595–2603.

Shuyuan Wu

Guanghua School of Management, Peking University, Beijing 100871, China.

E-mail: shuyuan.w@pku.edu.cn

Xuening Zhu

School of Data Science, Fudan University, Shanghai 200433, China.

E-mail: xueningzhu@fudan.edu.cn

Hansheng Wang

Guanghua School of Management, Peking University, Beijing 100871, China.

E-mail: hansheng@gsm.pku.edu.cn

(Received April 2021; accepted November 2021)

mailto:shuyuan.w@pku.edu.cn
mailto:xueningzhu@fudan.edu.cn
mailto:hansheng@gsm.pku.edu.cn

	Introduction
	The Methodology
	Model and notation
	Variance and bias analysis of the SOS estimator
	Jackknife estimators
	Theoretical properties

	Numerical Analysis
	Why sampling with replacement
	An algorithm for a GPU
	The communication and computation cost
	Simulation results of the JSE estimator
	Simulation results of the JDS estimator
	Real-data analysis

	Conclusion

