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ABSTRACT
Modern statistical analysis often encounters massive datasets with ultrahigh-dimensional features. In this
work, we develop a subsampling approach for feature screening with massive datasets. The approach is
implemented by repeated subsampling of massive data and can be used for analyzing tasks with memory
constraints. To conduct the procedure, we first calculate an R-squared screening measure (and related
sample moments) based on subsamples. Second, we consider three methods to combine the local statistics.
In addition to the simple average method, we design a jackknife debiased screening measure and an
aggregated moment screening measure. Both approaches reduce the bias of the subsampling screening
measure and therefore increase the accuracy of the feature screening. Last, we consider a novel sequential
sampling method, that is more computationally efficient than the traditional random sampling method.
The theoretical properties of the three screening measures under both sampling schemes are rigorously
discussed. Finally, we illustrate the usefulness of the proposed method with an airline dataset containing
32.7 million records.
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1. Introduction

Modern statistical analysis often faces massive datasets with
a huge number of features. Massive data size and the high-
dimensional features impose challenges with respect to data
storage, communication and statistical analysis (Fan et al. 2020).
On the one hand, the large data size makes data storage and
computing difficult. As a result, subsampling methods (Ma,
Mahoney, and Yu 2015; Wang, Zhu, and Ma 2018; Wang, Yang,
and Stufken 2019; Yu et al. 2020) and distributed statistical tools
(Shamir, Srebro, and Zhang 2014; Chang, Lin, and Wang 2017;
Jordan, Lee, and Yang 2019; Fan et al. 2019) are proposed, and
the corresponding theoretical properties are extensively studied.
On the other hand, thousands of features may be obtained from
data in various disciplines (Fan and Lv 2008), which makes the
problem of high-dimensional analysis important. To make sta-
tistical analysis (e.g., regression analysis) feasible, feature screen-
ing methods are proposed and widely used (Wang 2009; Li,
Zhong, and Zhu 2012b; Zhou, Zhu, and Li 2020; Li et al. 2020).

In the past decade, various subsampling methods have been
proposed due to the emergence of massive data. On the one
hand, subsampling makes the computation feasible for massive
datasets. On the other hand, it solves the problem of auto-
matic statistical inference, for example, estimating the standard
error of sample correlation. Kleiner et al. (2014) designed a
bag of little bootstraps (BLB) method to calculate precision
measures of interested estimations, which is more computa-
tionally efficient than traditional bootstrap method on massive
datasets. Sengupta, Volgushev, and Shao (2016) revised the BLB
method by reducing resampling times, which further reduces
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the computational cost. Recently, Pan et al. (2020) proposed
to conduct subsampling on the hard drive and developed an
algorithm called sequential addressing subsampling (SAS). In
addition to bootstrap-based subsampling methods, research has
focused on deriving optimal subsampling schemes for complete
dataset. A two-step procedure was developed by Wang, Zhu,
and Ma (2018) to minimize the asymptotic mean squared error.
Furthermore, an information-based optimal subdata selection
method was designed by Wang (2019) to preserve most of the
information contained in the full data, and Yu et al. (2020)
developed an optimal distributed subsampling algorithm, that is
able to obtain quasi-likelihood estimators for massive datasets.

Although the existing subsampling methods can realize auto-
matic statistical inference, they are typically designed for data
with fixed dimensions. When the features are of high dimen-
sion, a natural strategy is to screen out irrelevant features to
facilitate further analysis. Specifically, a correlation measure is
calculated between the response and each feature to implement
feature screening: features with weak correlation are treated as
irrelevant and removed. The literature on feature screening is
rich. Fan and Lv (2008) proposed a sure independence screening
(SIS) procedure using Pearson correlation, that, with probability
tending to 1, could ensure that the selected feature set covered
the important features. Wang (2009) revised the SIS proce-
dure using a forward regression approach. Li, Zhong, and Zhu
(2012b) developed a model-free sure independence screening
procedure with the distance correlation (DC-SIS). See Li et al.
(2012a), Wang (2012), Wu and Yin (2015), Barut, Fan, and
Verhasselt (2016), Pan, Wang, and Li (2016), and Zhou, Zhu, and
Li (2020) for recent developments in this regard. Moreover, in a
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recent work of Li et al. (2020), the authors studied a distributed
feature screening approach via componentwise debiasing. The
method is applicable to massive datasets and relies on a dis-
tributed architecture.

In this work, we focus on subsampling-based feature screen-
ing for massive datasets with ultrahigh-dimensional features.
We first obtain a measure based on the R-squared for each
subsample as a subsample measure; then, we develop two kinds
of screening procedures based on the subsample measures.

Debiased average screening. The first procedure is called jack-
knife debiased simple average screening, that is, debiased aver-
age screening (DAS) for short. Specifically, for each feature,
we average the debiased R-squared measure obtained for each
subsample associated with the feature. The debiased proce-
dure reduces the bias of the subsample measure, and allows for
smaller subsample sizes while maintaining the same screening
efficiency. The procedure is easy to implement based on sub-
samples and is sufficiently flexible to extend to various screening
measures.

Aggregated moment screening. The second procedure is called
the aggregated moment screening (AMS). In contrast to simple
average screening, we first take the average of several moment
estimators over all the subsamples respectively, and then com-
bine the averaged moment estimators to form an aggregated
moment measure. The idea is similar to the componentwise
debiasing method in distributed feature screening (Li et al.
2020). The AMS procedure requires the screening measure to
take the specific forms of several simple moments. As a result, it
lacks the flexibility compared to the DAS procedure.

In this work, we develop two screening procedures based
on subsamples for massive datasets with ultrahigh dimensions.
The main contributions of this work are as follows. First, the
sampling is conducted directly on the hard drive, which greatly
reduces the time cost and enables subsampling under a mem-
ory constraint. This is particularly useful for massive datasets.
Second, the proposed screening measure can handle qualitative
features with a diverging number of levels, which have not been
sufficiently investigated in literature but are frequently encoun-
tered in practice. Third, we derive the theoretical properties of
uniform convergence and screening consistency under various
subsampling schemes.

The rest of this article is organized as follows. Section 2 devel-
ops the model setting and the subsampling methods. Section 3
presents the theoretical properties of the proposed approaches.
Numerical studies are presented in Section 4, including the
simulation experiments and real dataset analysis. Finally, the
article concludes with a brief discussion in Section 5.

2. Feature Screening for Massive Data

2.1. Model and Notations

Suppose there are N observations, which are indexed as i =
1, . . . , N. For the ith observation, we record Yi ∈ R

1 as a con-
tinuous response andXi ∈ R

p as the associated covariate vector.
We consider the case that p is of ultrahigh dimension. Specifi-
cally, we divide Xi by variable types, that is, Xi = (X�

i , Z�
i )�,

where Xi = (Xi1, . . . , Xip1)
� ∈ R

p1 represents quantitative
variables and Zi = (Zi1, . . . , Zip2)

� ∈ R
p2 represents qualitative

variables. Immediately, we have p = p1 + p2. Suppose the jth
qualitative variable Zij takes lj levels. Then, we transform it to
lj − 1 dummy variables as Zij = (Zij1, . . . ,Zij(lj−1))

� ∈ R
lj−1

for 1 ≤ j ≤ p2, where Zijlj is taken as the baseline without
loss of generality. To model the continuous type response Yi, we
consider a linear regression model,

Yi = X�
i β +

p2∑
j=1

Z�
ij γj + εi, (2.1)

where β ∈ R
p1 and γj ∈ R

lj−1 are the associated regres-
sion parameters. Here, εi is the independent noise term with
var(εi) = σ 2. In addition, assume εi and Xi are independent
of each other.

Let X = (X1, . . . , XN)� ∈ R
N×p1 , Zj = (Z1j, . . . ,ZNj)� ∈

R
N×(lj−1), and Y = (Y1, . . . , YN)� ∈ R

N . Denote the jth
column vector of X as Xj ∈ R

N . Under the high-dimensional
setting, sparsity is typically assumed; that is, only a set of impor-
tant features have significant effects on the response. Define
Mβ

T = {1 ≤ j ≤ p1 : βj �= 0} as the true model
for the quantitative variables. For the qualitative variables, we
announce Zj to be important if there exists at least one level
1 ≤ k ≤ lj − 1 such that γjk �= 0. Equivalently, the true model
for qualitative variables is defined as Mγ

T = {1 ≤ j ≤ p2 :
there exists 1 ≤ k ≤ lj − 1 such that γjk �= 0}.

2.2. Sequential Addressing Subsampling

Under the setting of massive data, the sample size N is extremely
large. Hence, performing statistical analysis using the whole
data is time consuming and even infeasible under memory con-
straints. As an alternative, one could conduct repeated subsam-
pling and perform statistical analysis based on the subsamples.
A straightforward procedure is to repeatedly perform subsam-
pling with replacement from the original dataset. This scheme
is then referred to as random addressing sampling (RAS), which
requires to sampling of n observations by addressing the point-
ers n times on the hard drive. Sampling directly from the hard
drive is particularly useful when the whole data cannot be read
into memory at once. However, the RAS procedure is time
consuming for large-scale datasets.

To address this issue, Pan et al. (2020) proposed a sequential
addressing subsampling (SAS) approach, that first shuffles the
dataset by randomly permuting all the data points. The shuffling
procedure is conducted only once. Then, a random data point
is addressed on the hard drive, and the subsequent n − 1 data
points are read into memory at once. This process yields one
sequential subsample. Note that the SAS method requires only
a single addressing on the hard drive to obtain a sequential
subsample, and this procedure greatly reduces the sampling
cost.

Remark 1. Compared to that of the conventional sampling
approach, the sampling space of the SAS method is smaller.
Specifically, for the SAS method, only N − n + 1 subsamples
can be generated given the shuffling data. In contrast, for the
conventional sampling method, the subsample has Nn possible
combinations, which is much larger. As a result, we should
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carefully select the subsample size n and number of repeated
subsamples to make the procedure work.

Remark 2. Thanks to an anonymous referee and we find that
the idea of the sequential addressing method can be also used
in the divide-and-conquer type method. Specifically, after data
shuffling, we split the whole dataset into M nonoverlapped
manageable segments with segment size n = N/M. As a result,
relevant statistics can be computed based on each segment. We
refer to this method as divide-and-conquer (DC) method. The
method shares the same spirit with the SAS method but without
subsampling procedure. Compared to the RAS- and SAS-type
sampling methods, the DC method has much smaller number of
segments M especially when n is larger. As we will discuss in the
theoretical analysis, this can lead to inferior statistical inference
performance.

2.3. Feature Screening Measures Via Subsampling

A straightforward way to conduct feature screening via sub-
sampling is to calculate the screening measures using each
subsampled data and then combine them by simple average. We
refer to the screening measure derived by this procedure as the
simple average screening measure. Although the simple average
screening measure is easy to obtain, it produces a nonnegligible
amount of bias. To rectify the bias issue, we propose two screen-
ing measures, both measures designed based on the R-squared
value.

The first screening measure, called the debiased average
screening (DAS) measure, is simply a simple average of the
subsample measure with an additional jackknife bias reduction
step. The second procedure is called the aggregated moment
screening (AMS) measure, which first calculates sample
moments based on subsamples and then reassembles them
together to form the final result. The basic ideas of the above
two screening measures are illustrated in Figure 1.

To illustrate the details of the screening measures, we first
describe the R-squared screening measure based on one sub-
sample. Suppose that we conduct the sampling procedure B
times. Furthermore, denote the predictors and response asso-
ciated with the kth subsample as

X(k) = (X̃(k)1, X̃(k)2, · · · , X̃(k)n)
� ∈ R

n×p1 ,
Z(k)j = (Z̃(k)1j, Z̃(k)2j, · · · , Z̃(k)nj)

� ∈ R
n×(lj−1),

Y(k) = (Ỹ(k)1, Ỹ(k)1, . . . , Ỹ(k)n)
� ∈ R

n.

For convenience we can scale X(k), Z(k)j and Y(k) to satisfy∑
i X̃(k)i = 0,

∑
i Z(k)ij = 0 and

∑
i Ỹ(k)i = 0. Let the

set of quantitative variables of interest be collected by M =
{j1, . . . , jm}. For the kth subsample, let X

M
(k) = (X(k)j :

j ∈ M) ∈ R
n×|M|. Correspondingly, define HM

(k) =
X
M
(k) {(XM

(k) )
�
X
M
(k) }−1(XM

(k) )
�. Using X

M
(k) as the covariates and

Y(k) as the response, the R-squared for the kth subsample can
be expressed as

R2(XM
(k) ) =

(
X
M�
(k) Y(k)

)�(
X
M�
(k) X

M
(k)

)−1(
X
M�
(k) Y(k)

)
||Y(k) − Y(k)||2

= Y
�
(k)H

M
(k) Y(k)

||Y(k) − Y(k)||2
, (2.2)

where Y(k) = n−1 ∑n
i=1 Ỹ(k)i. The R-squared screening mea-

sure is suitable for both quantitative variables and qualitative
variables with multiple levels. Since the denominator (i.e.,
||Y(k) − Y(k)||2) in (2.2) does not vary with different covariates
X(k)j, hence it does not change the rank of the jth covariate in
the final screening result (Fan, Feng, and Song 2011). To make
it more computationally efficient, we could omit ||Y(k) −Y(k)||2
in (2.2) in the practical implementation.

Remark 3. The screening measure can be seen as an extension
of single-variable case. Typically, for a quantitative variable Xj,

Figure 1. Basic ideas of the DAS and AMS measures. Specifically, R̃2(XM
(k) ) = R2(XM

(k) ) − �̂(k) is given in (2.5), and the AMS measure is given in (2.6).
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we have M = {j}. In this case the regression R-squared is
equivalent to the square of the correlation between Y(k) and
X(k)j. As a result, the screening measure is the same as the SIS
proposed by Fan and Lv (2008). For a qualitative variable with l
levels, the signal strength of each level might be too weak to be
detected by the SIS approach. As a result, it is more reasonable
to evaluate such variables as a whole.

Remark 4. The proposed framework has a great potential for
extensions. In particular, a practitioner might consider using
different screening measures for different groups of variables.
For instance, one may consider using R2-based measure for
quantitative variables and distance correlation (Li, Zhong, and
Zhu 2012b) for qualitative variables. In this case, we could
flexibly adjust the definition of Equation (2.2) to screen different
groups of variables. The R-squared screening measure is also
easy to extend to conditional sure independence screening (Fan
and Lv 2008), pairwise interactions screening (Fan et al. 2016;
Zhou et al. 2019) and many others according to the application
scenarios. Last, the framework is easy to extend to generalized
linear models. In this regards, we can revise the R-squared
screening measure to adapt to generalized data types. Specifi-
cally, the likelihood based screening measure (Fan et al. 2010),
distance correlation (Li, Zhong, and Zhu 2012b), model-free
independence screening method (Zhou, Zhu, and Li 2020) can
be used for this scenario.

Given the screening measure, feature screening is conducted
as follows. For a quantitative variableXj, letM = {j} and denote
R2
Xj

= R2(XM
(k) ) if only the kth subsample is employed. Then,

for a given constant cβ , we can estimate Mβ
T by M̂β = {1 ≤

j ≤ p1 : R2
Xj

≥ cβ}. Similarly, for a quantitative variable Zj,
we use the notation R2

Zj
to denote the marginal R-squared and

estimate Mγ
T by M̂γ = {1 ≤ j ≤ p2 : R2

Zj
≥ cγ }, where cγ is a

prespecified constant. In the following, we discuss the proposed
two screening measures in detail.

2.3.1. Debiased Average Screening
Based on the R-squared screening measure, we define a simple
average screening (AVS) measure by taking the simple average
over all subsamples,

R2
AVS

(
X
M

)
= 1

B

B∑
k=1

R2
(
X
M
(k)

)
. (2.3)

This idea is widely used in literature (Kleiner et al. 2014;
Sengupta, Volgushev, and Shao 2016) and is sufficiently flexible
to extend to other screening measures. However, as we will
show in the theoretical analysis, this approach produces a bias
of order O(n−1). The bias is ignorable as long as the subsample
size n is large or the signal strength of important features
is strong. However, increasing the subsample size requires
addressing the hard disk a greater number of times, which is
time consuming. To alleviate the bias issue while maintaining
a compact subsampling size, we revise the simple average
screening measure to reduce the bias.

We first introduce the jackknife debiased average screening
measure. Denote X(k),−i = (X̃(k)j : j �= i)� and Y(k),−i =

(Ỹ(k)j : j �= i)� as the kth subsample eliminating the ith subject.
Correspondingly, define �̂M

X(k),−i = (n − 1)−1(XM
(k),−i)

�
X
M
(k),−i

�̂M
XY(k),−i = (n − 1)−1(XM

(k),−i)
�
Y(k),−i, and σ̂ 2

y(k),−i = (n −
1)−1||Y(k),−i − Y(k),−i||2. Then the leave-one-out R-squared
estimator is given as follows:

R2
(
X
M
(k),−i

)
= σ̂−2

y(k),−i

(
�̂M

XY(k),−i

)�(
�̂M

X(k),−i

)−1(
�̂M

XY(k),−i

)
.

(2.4)
The bias is estimated as �̂(k) = n−1(n − 1)

∑
i R2(XM

(k),−i) −
(n − 1)R2(XM

(k) ). This leads to the jackknife debiased simple
average screening (DAS) measure, defined as follows:

R2
DAS

(
X
M

)
= 1

B

B∑
k=1

{
R2

(
X
M
(k)

)
− �̂(k)

}
. (2.5)

The bias of the above DAS measure is reduced substantially from
O(n−1) to O(n−2). As a result, this approach allows for a smaller
subsampling size while guaranteeing high accuracy.

2.3.2. Aggregated Moment Screening
The DAS measure is easy to extend to other screening measures
using the same jackknife bias reduction procedure; hence,
it is flexible. Beyond this approach, we note that the R-
squared screening measure in Equation (2.2) is a nonlinear
transformation of several simple moments. This motivates
us to propose an AMS measure. Specifically, note that the
R-squared (2.2) constitutes of three components, that is,
�̂M

X(k) = n−1(XM
(k) )

�
X
M
(k) , �̂M

XY(k) = n−1(XM
(k) )

�
Y(k), and

σ̂ 2
y(k) = n−1||Y(k) − Y(k)||2. Each component is a simple

moment estimator. Based on this observation, the AMS
measure is designed as follows. First, we calculate the moment
estimators of the above three components as the simple average
over all the subsamples, �̂M

X
= B−1 ∑B

k=1 �̂M
X(k), �̂M

XY
=

B−1 ∑B
k=1 �̂M

XY(k), and σ̂ 2
Y

= B−1 ∑B
k=1 σ̂ 2

y(k). Then we define
the AMS measure as

R2
AMS

(
X
M

)
= 1

σ̂ 2
Y

(
�̂M

XY

)�(
�̂M

X

)−1(
�̂M

XY

)
. (2.6)

Similarly, for a set of qualitative variables collected in M, one
could define �̂M

Z
, �̂M

ZY
, and R2(ZM) in the same way. The AMS

measure in Equation (2.6) enjoys small bias and can be treated
as a componentwise debiasing method (Li et al. 2020). When
high correlation level is presented among the predictors of
ultrahigh dimensional linear regression models, we recommend
to use an iterative screening strategy (Fan and Lv 2008; Cho and
Fryzlewicz 2012). The basic idea is to iteratively apply feature
screening and post-variable-selection procedures to enhance
the methodology power. We discuss this extension in details in
Appendix A.1. In the following section, we further study the
theoretical properties of the screening measures.

3. Theoretical Property

3.1. Convergence Properties Under RAS

To motivate the theoretical discussion, we first investigate the
properties under the basic random sampling (RAS) scheme.
Specifically, the subsampling procedure is conducted for B
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rounds. In each round, we sample n observations from the data
with replacement. As a result, the sampling probability for each
data point is 1/N. By slightly abusing the notation, we use XM

(k)
and Y(k) to denote the data of the kth subsampling procedure.
Specifically, we denote R2

AMS(Xj), R2
AVS(Xj), R2

DAS(Xj) as
R2
Xj,AMS, R2

Xj,AVS, R2
Xj,DAS for convenience if a single covariate

Xj is considered. Without loss of generality, we let N ≥ nB in
our following analysis.

Under the RAS setting, calculating the AMS measure is
equivalent to conducting one-time subsampling with subsample
size nB. Hence, it is straightforward to derive the theoretical
properties of the AMS measure first. To this end, assume the
following conditions.

Assumption 1 (Sub-Gaussian distribution). Assume the covari-
ates Xij, Zijl and εi independently follow sub-Gaussian distri-
butions, that is, E{exp(tXij)} ≤ exp(σ 2

x t2/2), E{exp(tZijl)} ≤
exp(σ 2

z t2/2), and E{exp(tεi)} ≤ exp(σ 2
ε t2/2) for any t > 0. In

addition, let E(εi) = 0, E(Xij) = 0, and var(Yi) = σ 2
y < ∞.

Assumption 2 (Dimensionality for the AMS measure under
RAS).

(a) (Quantitative covariates). Assume log p1 � min{nBN−2ν ,
n1/2BN−ν} with ν ∈ [0, 1/2). In addition, assume log p1 +
log B � n1/2.

(b) (Qualitative covariates). Let πjl = P(Zj = l) and
πmin = minj,l πjl. Assume log p2 + maxj log lj �
min{nBN−2ν l−2

j , n1/2BN−ν l−1
j , nBπmin}, where ν ∈

[0, 1/2). In addition, assume log p1 + log B � n1/2.

The first condition assumes a sub-Gaussian distribution for
all covariates and noise terms. Compared to the normality
assumption on covariates (Fan and Lv 2008; Wang 2009;
Wang, Kim, and Li 2013) in the feature screening literature,
the sub-Gaussian assumption is more flexible. Assumption 2
is concerned with the dimensionality of the quantitative and
qualitative covariates. The feature dimension is allowed to grow
exponentially with the subsample size n and the number of
subsampling times B. Specifically, with respect to the qualitative
covariates, the number of levels (lj) and the smallest ratio of
all levels (πmin) are also critical factors, which implies that the
number of levels (i.e., lj) should not be too large and that the
features cannot be too sparse. Under the RAS, we illustrate the
convergence property for the AMS measure.

Theorem 1. Assume Assumptions 1 and 2. (a) For a quantitative
variable Xj, we have maxj

∣∣R2
Xj,AMS − R2

Xj

∣∣ = Op(N−ν), where
R2

Xj
= cor(Xj,Y)2. (b) For a quantitative variable Zj with lj

levels, we have maxj
∣∣R2

Zj,AMS −R2
Zj

∣∣ = Op(N−ν), where R2
Zj

=
σ−2

y
∑lj−1

l=1 π−1
jl σ 2

zy,jl with σ 2
y = var(Yi), πjl = P(Zijl = 1), and

σzy,jl = E(ZijlYi).

The proof of Theorem 1 is given in Appendix C.1. The
results suggest that the resampling based R-squared values of all
covariates converge uniformly to their population values.

Next, we investigate the convergence property of the AVS
measure under RAS. Although the implementation of the AVS

measure is simple, it has the disadvantage of producing a non-
negligible bias of O(n−1). To make this point clear, we first study
the theoretical properties of R2

Xj(k),AVS for a single subsampling
round k in the following Lemma.

Lemma 1. Assume Assumption 1. Then, we have R2
Xj(k),AVS −

R2
Xj

= �xb + �xv{1 + op(1)}. Here, �xb = c1n−1 +
c2 max{n−2, N−1}{1+o(1)} is the bias term, where c1 and c2 are
finite constants. In addition, �xv = Op(n−1/2) with E(�xv) = 0
is the leading term for variance.

The proof of Lemma 1 is given in Appendix C.2.

Remark 5. According to Lemma 1, the leading bias term is
of order O(n−1) and the leading variance term is of order
Op(n−1/2). By repeated sampling, we can manage to reduce
the variance order; however, the bias will remain. If the signal
strengths of all important features are strong, then it is easy to
distinguish them from nonimportant features. However, when
the signal strength is small, for example, minj∈Mβ

T
R2

Xj
=

O(N−ν), we must increase the subsample size n to ensure that
�xb � minj∈Mβ

T
R2

Xj
. Otherwise, the screening procedure will

have poor performance.

To alleviate the bias issue of the AVS measure, we use the
jackknife debiased procedure. The bias reduction effect is estab-
lished in the following lemma.

Lemma 2. Under Assumption 1, we have R2
Xj(k),DAS − R2

Xj
=

�xb2 + �xv{1 + op(1)}. Here, �xb2 = c max{n−2, N−1}{1 +
o(1)} is the bias term, where c is a finite constant. In addition,
�xv = Op(n−1/2) with E(�xv) = 0 is the leading variance
term.

The proof of Lemma 2 is given in Appendix C.4. As shown by
Lemma 2, the leading bias of the DAS measure is O(n−2), which
is much smaller than that of the AVS measure. Therefore, this
approach allows for a smaller sample size to achieve competitive
screening accuracy. To further obtain the uniform convergence
property, we require the following condition.

Assumption 3 (Dimensionality for the DAS measure under
RAS).

(a) (Quantitative covariates) Assume log p1 + log B �
min{n1/3, N1/4}. Let log p1 � min{nBN−2ν , n1/2BN−ν}
for some ν ∈ [0, 1/2).

(b) (Qualitative covariates) Assume log p2 + log B + maxj log lj
� min{(nπmin)1/2, n1/3, N1/4}. Further assume log p2 +
maxj log lj � minj{nBN−2νπ2

minl−2
j , n1/2BN−νπminl−1

j }
for some ν ∈ [0, 1/2).

The above dimensionality requirement is slightly more
restrictive than Assumption 2. That is because it uses higher-
order Taylor expansion for the theoretical properties, which
increases the difficulty in analyzing the convergence property.
Similarly, we establish the convergence property of the DAS
measure, as follows.
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Theorem 2. Under Assumptions 1 and 3, the following conclu-
sions hold.

(a) It holds maxj |R2
Xj,DAS − R2

Xj
− �xb| = Op(N−ν), where

�xb = O(n−2).
(b) It holds maxj |R2

Zj,DAS − R2
Zj

− �zb| = Op(N−ν), where
�zb = O(n−2 maxj

∑
l π

−1
jl ).

The proof of Theorem 2 is provided in Appendix C.5. The
theoretical properties are established based on the AVS mea-
sure. For theoretical completeness, we discuss the convergence
property of the AVS measure in Appendix B. Compared to that
of the AVS measure, the bias order is reduced for quantitative
variables. For qualitative variables, the bias reduction effect is
also related to πjl. Specifically, the features should not be too
sparse to be detected. In summary, as long as �xb and �zb are
of a smaller order than N−ν , the DAS measure can approximate
R2

Xj
and R2

Zj
uniformly on the order of Op(N−ν).

3.2. Convergence Properties Under SAS

Subsequently, we discuss the theoretical properties for the
screening method under the SAS setting. Under this sampling
scheme, we no longer have the conditional independence
of all sampling points given Z, as in RAS. Instead, we have
conditional independence of {X(k),Z(k)j,Y(k)} for k = 1, . . . , B.
This scenario requires slightly more restrictive conditions on
the subsampling size n. For the AMS measure, we assume the
following condition.

Assumption 4 (Dimensionality for the AMS measure under
SAS).

(a) (Quantitative covariates). There exists δ ∈ (0, 1/2) such
that log p1 � min{n1−2δBN−2ν , Bn1/2−δN−ν} and n2δ 	
log p1 + log N, where ν ∈ [0, 1/2).

(b) (Qualitative covariates). There exists δ ∈ (0, 1/2) such that
log p2 + maxj log lj � minj{n1−2δBN−2ν l−2

j , Bn1/2−δN−ν

l−1
j , n1/2−δBπmin} and n2δ 	 log p2 + maxj log lj + log N,

where ν ∈ [0, 1/2).

Compared to the random sampling setting for the AMS
measure, Assumption 4 imposes more restrictive assumptions
on the subsample size n. Specifically, n should be sufficiently
large to allow for high-dimensional features (i.e., log p1 � n2δ

and log p2 � n2δ).

Theorem 3. Assume Assumptions 1 and 4; then, the follow-
ing hold (a) maxj |R2

Xj,AMS − R2
Xj

| = Op(N−ν) and (b)
maxj |R2

Zj,AMS − R2
Zj

| = Op(N−ν).

The proof of Theorem 3 is given in Appendix C.6. The
AMS measure under SAS enjoys uniform convergence, and no
further bias correction procedure is required as long as B is
sufficiently large. To establish the uniform convergence for the
DAS measure under SAS, we require the following condition.

Assumption 5 (Dimensionality for the DAS measure under
SAS).

(a) (Quantitative Covariates) There exists δ ∈ (0, 1/3) such
that log p1 � min{n1−2δBN−2ν , Bn1/2−δN−ν} and log p1 +
log N � min{n2δ , n2(1−3δ), n3/2−3δ} hold. In addition
assume log p1 + log B � min{n1/3, N1/4}.

(b) (Qualitative Covariates) There exists δ ∈ (0, 1/3) such that
log p2+maxj log lj � minj{n1−2δBN−2ν l−2

j , n1/2−δBN−ν l−1
j }

hold. In addition assume log p2 + maxj log
lj + log N � min{n2δ , n2(1−3δ), n3/2−3δ , n3/2+2δπmin,
(nπmin)1/2, n5/8+δ/4π

1/4
min} and log p2+maxj log lj+log B �

min{n1/3, N1/4}.

Similar to the RAS setting, in order for the DAS measure to
work, we place additional restrictions on the subsampling size
n under the SAS sampling scheme. We establish the theoretical
properties in the following theorem.

Theorem 4. Assume Assumptions 1 and 5; then, the following
conclusions hold.
(a) It holds maxj |R2

Xj,DAS − R2
Xj

− �xb| = Op(N−ν), where
�xb = O(n−1).
(b) It holds maxj |R2

Zj,DAS − R2
Zj

− �zb| = Op(N−ν), where
�zb = O(n−2 ∑

l π
−1
jl ).

The proof of Theorem 4 is given in Appendix C.8 and the
results are consistent with Theorem 2 under the RAS setting.

3.3. Statistical Inference Under RAS and DC

Using the same computational procedure, both DAS and AMS
can be obtained under the DC setting. In the view of estima-
tion, the AMS under the DC setting is equivalent to the global
estimator (when nB = N), thus it is optimal. However, the
AMS method cannot support automatic statistical inference.
On the other hand, both AVS and DAS estimators are able to
provide a relatively complete toolbox for automatic statistical
inference, which includes standard error estimation, quantile
estimation, confidence interval construction, and many others.
For illustration propose, we compare the statistical inferences
based on the AVS method for both RAS and DC settings.

Take the standard error (SE) of R2
AVS(Xj) as an example.

We could estimate the SE as follows. Let θ̂(k) = (θ̂xy(k), θ̂x(k),
θ̂y(k))

� ∈ R
3, where θ̂xy(k) = X

�
(k)jY(k)/n, θ̂x(k) = X

�
(k)jX(k)j/n,

θ̂y(k) = ||Y(k) − Y(k)||2/n. As a result, we have R2
AVS(Xj) =

B−1 ∑B
k=1 g(θ̂(k)), where g(θ̂(k)) = (θ̂y(k))

−1(θ̂x(k))
−1(θ̂xy(k))

2.
The SE2 of R2

AVS(Xj) under the RAS setting can be estimated as
follows:

ŜE2 = n
B

( 1
nB

+ 1
N

) B∑
k=1

{
g(θ̂(k)) − R2

AVS(Xj)
}2

. (3.1)

Similarly, under the DC setting we estimate SE2 by ŜE2 =
B−2 ∑B

k=1{g(θ̂(k)) − R2
AVS(Xj)}2. To investigate the theoretical

properties of ŜE2, we present the following conclusion.
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Theorem 5. Define �θ = cov(Di) with Di = (XijYi, X2
ij, (Yi −

μy)2)� and μy = E(Yi). Let τ = ġ(θ)��θ ġ(θ). Assume
Assumption 1 and it holds,

(a) under RAS we have SE2 = τ(1/nB + 1/N){1 + o(1)};
(b) under DC with nB ≤ N, we have SE2 = τ(nB)−1{1+o(1)};
(c) under both settings we have ŜE2 = SE2{1 + Op(1/B1/2 +

1/N1/2)}.

The proof of Theorem 5 is given in Appendix C.9. By The-
orem 5, we can conclude that ŜE2 is a consistent estimator and
a reliable estimation of ŜE2 requires relatively large number of
B. Under the DC setting, it must satisfy B ≤ M = N/n, while
for RAS we could allow for a much larger subsampling rounds
B which is not restricted by N and n. As a result, the statistical
inference under RAS setting is more reliable than DC setting.
We verify our findings in an extensive numerical study given in
Appendix F.1.

3.4. Screening Consistency

The uniform convergence of the screening measures guarantees
that the important features have higher ranks (of R-squared)
than the nonimportant ones as long as the signal is sufficiently
strong. This enables us to select the important features consis-
tently using the R-squared screening measure. To clarify this
statement, we next establish the sure screening property of R2

Xj

and R2
Zj

. To this end, we require the following conditions.

Assumption 6 (Correlation). Let Z∗
ijl = Zijl/

√
πjl and Z∗

i =
(Z∗

ijl : 1 ≤ j ≤ p2, 1 ≤ l ≤ lj − 1). In addition, define
X ∗

i = (X�
i ,Z∗�

i )� ∈ R
q and � = cov(X ∗

i ) ∈ R
q×q, where

q = p1 + ∑
j lj − p2. Assume λmax(�) ≤ τmax, where τmax is

a positive constants. In addition, let λmin(�(MT)) > 0, where
MT is the set of indexes of nonzero coefficients and �(MT) is
the sub-matrix of � of important variables.

Assumption 7 (Minimum Signal). Let Rmin
def= min{minj∈Mβ

T
R2

Xj
, minj∈Mγ

T
R2

Zj
} > 2cθ , where cθ = max{cβ , cγ }. For the

AVS measure, let min{cθ , maxj n−1lj} 	 N−ν . For the DAS
measure, let min{cθ , maxj n−2 ∑lj−1

l=1 π−1
jl } 	 N−ν . For the

AMS measure, let cθ 	 N−ν .

Assumption 6 restricts the correlations among the covari-
ates; therefore, the eigenvalues of the covariance matrix behave
properly. We require λmin(�(MT)) > 0 to ensure the model
identification. Next, Assumption 7 requires that the minimal
signal strength of all important features is not too weak to be
detected. Specifically, a lower ν implies a weaker signal, which
places more restrictive conditions on the uniform convergence.
To understand this assumption more intuitively, we further
discuss in Lemma 3 a lower bound of Rmin in a specific scenario,
which relates to minimum nonzero coefficients. In addition,
under the AVS and DAS settings, this value is also related to the
subsample size n. Therefore, a sufficient number of subsamples
should be used in each round to guarantee the detection of

weak signals. Based on the above assumptions, we can obtain
the following screening properties.

Theorem 6. (Screening Consistency under RAS) Let mmax =
4τmaxσ

2
y /Rmin. Then under Assumptions 1–3, 6–7, we have

P
(
Mβ

T ⊂ M̂β and Mγ
T ⊂ M̂γ

)
→ 1, (3.2)

P
(

max
{∣∣M̂β

∣∣, ∣∣M̂γ
∣∣} < mmax

)
→ 1. (3.3)

The proof of Theorem 6 is given in Appendix D.1. First,
(3.2) implies that all important features can be consistently
selected under appropriate conditions. Subsequently, Equation
(3.3) indicates the model size is be well controlled. Specifically,
the model size is closely related to τmax, σ 2

y , and Rmin. First,
if τmax is large, the dependence among the features is higher;
thus, it is more difficult to screen all relevant features. Next, if
σ 2

y is high, the signal-to-noise ratio will be low, which increases
the difficulty of the screening task. Last, a lower Rmin indicates
weaker signal strengths. As a result, we need to include more
features in M̂β and M̂γ to guarantee the screening consistency
property. In the following Lemma, we further relate Rmin to the
minimum regression coefficient for important features under a
specific scenario.

Lemma 3. Define MT as the set of nonzero coefficients corre-
sponding to X ∗

i defined in Assumption 6. Suppose the elements
of �(MT) are nonnegative and the nonzero model coefficients
are positive. Then we have Rmin ≥ minj∈MT (

∑
i∈MT σij)2

θ2
min/σ 2

y , where θmin = min{|βmin|, |γmin|} with βmin =
minj∈Mβ

T
|βj| and γmin = minj∈Mγ

T
min1≤l≤lj−1 π

1/2
jl γjl.

The proof of Lemma 3 is given in Appendix D.2. In
Lemma 3, we consider a special scenario that �(MT) has
nonnegative elements and all nonzero parameters are pos-
itive. In this case, Rmin is related to two important factors,
i.e., θmin and minj∈MT (

∑
i∈MT σij)2/σ 2

y . First, θmin is the
minimum absolute nonzero model parameters. If θmin is
large, the separation between zero and nonzero coefficients
will be large therefore the screening power is increased. If
minj∈MT (

∑
i∈MT σij)2/σ 2

y is high, then the correlation among
important features is high. Therefore, it makes it easier to
detect important features. Assumption 7 can be guaranteed if
θmin 	 N−ν/2/ minj∈MT (

∑
i∈MT σij)2 under this scenario,

which implies the weakest signal approaches zero slowly as the
sample size N increases.

Under the SAS sampling scheme, we can also establish the
screening consistency result, as follows.

Theorem 7. (Screening Consistency under SAS) Let mmax =
4τmaxσ

2
y /Rmin. Then, under Assumptions 1 and 4–7, we have

P
(
Mβ

T ⊂ M̂β and Mγ
T ⊂ M̂γ

)
→ 1, (3.4)

P
(

max
{∣∣M̂β

∣∣, ∣∣M̂γ
∣∣} < mmax

)
→ 1. (3.5)

The proof of Theorem 7 is given in Appendix D.3. As implied
by the result, the SAS can perform as well as RAS but with much
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lower computational complexity. In the next section, we evaluate
the finite sample performances and computational costs.

Remark 6. Theoretically, mmax is in the order of O(Nν) by using
the Assumption 6–7, while it relies on known parameters. In
practice, to implement the proposed method, we follow Fan
and Lv (2008), choosing M̂β = {1 ≤ j ≤ p1 : R2

Xj
is

the first dβ largest among all} and M̂γ = {1 ≤ j ≤ p2 :
R2
Zj

is the first dγ largest among all }. By further assuming that
n/ log n 	 Nν , we set dβ = dγ = [n/ log n] in our simulation,
where [r] denotes the integer part of r.

4. Numerical Study

4.1. Simulation Models and Settings

To evaluate the finite sample performance of the proposed
method, we present two examples in this section. The first
example focuses on quantitative covariates Xi, i.e., Yi = X�

i β +
εi, and the second focuses on qualitative covariates Zij, i.e.,
Yi = ∑p

j=1 Z�
ij γj +εi. In each example, the feature dimension p

is fixed at 1000. We also consider a more challenging case with
larger dimension p = 5×104. The main findings are similar and
the details are given in Appendix F.2. In addition, the noise term
εi is generated independently and identically from a normal
distribution N(0, σ 2). In each example, we perform feature
screening procedures under both the RAS and SAS settings.
The examples are given as follows.

Example 1 (Quantitative covariates). In this example, we con-
sider an autoregressive-type correlation structure on covariates.
Specifically, we generate the covariate Xij from a multivariate
normal distribution with mean 0p and Cov(Xij1 , Xij2) = ρ|j1−j2|
with ρ ∈ [0, 1) for (1 ≤ j1, j2 ≤ p). A larger ρ implies
higher dependence among covariates, which in turn increases
the difficulty of the feature screening task. The important feature
set is given as Mβ

T = {1, . . . , 50} with |Mβ
T | = 50. Corre-

spondingly, the regression coefficients of important features are
set as α(−1)U1j U2j, where U1j is generated from a Bernoulli
distribution B(0.4), U2j is sampled from uniform distribution
U[1, 2], and α is a parameter controlling the signal strength. We
set α = 0.03, ρ = 0.8 and σ = 1. In addition, for this example,
we also evaluate a case when the signal is relatively stronger by
setting α = 0.04, ρ = 0.1, σ = 0.4. The results for stronger
signal case are given in Appendix F.3.

Example 2 (Qualitative covariates). In this example, we gen-
erate the qualitative covariates based on the setting in Example
1. Specifically, we first generate a set of quantitative covariates
Xij from a multivariate normal distribution with mean 0p and
Cov(Xij1 , Xij2) = ρ|j1−j2| with ρ = 0.8 for (1 ≤ j1, j2 ≤ p),
moreover, we let σ = 1 as in Example 1. Given the impor-
tant feature set Mγ

T = {1, . . . , 5}, we generate the qualitative
variables Zij, as follows. For the important variables, we set
lj = j + 1 with 1 ≤ j ≤ 5. For the nonimportant covariates,
we set lj = 3 with j ≥ 6. For the jth variable, define πj =
(P(Zijk = 1) : 1 ≤ k ≤ lj)�. We consider two typical
cases for πj. First, for j = 1, 2, we evaluate the case where
the levels of the qualitative variables are relatively balanced.
Specifically, we set π1 = (0.5, 0.5)� and π2 = (0.3, 0.3, 0.4)�.

Table 1. Critical model parameters (i.e. τmax, σ 2
y and Rmin) of Example 1 and

Example 2.

τmax σ 2
y Rmin

Example 1 9.00 1.24 2.84 × 10−5

Example 2 51.27 1.01 3.84 × 10−3

Next, for the three other important variables we evaluate the
unbalanced situations, that is, π3 = (0.1, 0.2, 0.3, 0.4)�, π4 =
(0.1, 0.1, 0.3, 0.35, 0.15)�, and π5 = (0.1, 0.1, 0.1, 0.2, 0.2, 0.5)�.
Last, for the remaining covariates, we set πj = (0.1, 0.2, 0.7)�.
The qualitative variables are then generated as Zijk = 1 (1 ≤
k ≤ lj − 1) if qj,k−1 ≤ Xij < qj,k, where qj,k is the αk =∑k

m=1 πjkth quantile of the standard normal distribution. As
a consequence, the dependence of the qualitative variables is
embedded through {Xij}. Finally, the regression coefficients of
the important features are set to ν(−1)U1jk U2jk for 1 ≤ k ≤ lj−1,
where U1jk ∼ B(0.4), U2jk ∼ U[1, 2], and ν = 0.03 in the
simulation.

To better understand the simulation setting, we present sev-
eral critical model parameters (i.e. τmax, σ 2

y and Rmin) in Table 1.
In the first example Rmin is smaller, hence, the signal of the
nonzero coefficients is weaker. In the second example τmax is
larger, which implies a higher dependence level among covari-
ates.

4.2. Performance Measurements and Simulation Results

For each example, we set the sample size as N = 105 and
106. Once the whole dataset is generated, they are placed as a
single file. The sizes of the files vary from 0.9 to 19.7 GB on the
hard drive, and can hardly be read into computer memory as a
whole. For a reliable evaluation, we replicate the experiment a
total of M = 100 times. All computations are performed using
Python 3.7.

To gauge the finite-sample performance, we employ the fol-
lowing measurements. First, we evaluate the numerical perfor-
mance of parameter estimation. Specifically, for the mth replica-
tion, we calculate R2(m)

AVS , R2(m)
DAS , and R2(m)

AMS. Take the AVS measure
as an example. The bias and the standard error (SE) are esti-
mated as BiasAVS = |M−1 ∑M

m=1(R2(m)
AVS − R2)| and SEAVS =

|M−1 ∑M
m=1(R2(m)

AVS − R2
AVS)

2|1/2, respectively, where R2
AVS =

M−1 ∑M
m=1 R2(m)

AVS . In addition, the root-mean-squared error
(RMSE) is calculated as RMSEAVS = {M−1 ∑M

m=1(R2(m)
AVS −

R2)2}1/2. The measurements can be defined similarly for the
DAS and AMS measures.

Second, we evaluate the accuracy of the feature screening
procedure according to the ranking consistency. In this work,
ranking consistency is evaluated by the AUC measure, which
is calculated as follows. Take the AVS measure as an example.
For the m-th replication, we divide all the features into two sets:
the positive set, which includes all the important features (i.e.
Mβ

T), and the negative set, defined as M̃β
T , which includes all

the nonimportant features (i.e., M̃β
T = {j : j /∈ Mβ

T}). Then the
AUC measure (in the mth experiment) is expressed as follows:
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Figure 2. Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and AMS measures for different (n, B) under the SAS sampling scheme for Example 1 (left panels)
and Example 2 (right panels). The sample size N is fixed to N = 105.

AUC(m)
AVS = 1 −

(
1

|Mβ
T ||M̃β

T |
∑

j+∈Mβ
T

∑
j−∈M̃β

T

×
[

I
{

R2(m)
AVS

(
Xj+

)
< R2(m)

AVS

(
Xj−

)}
+ 0.5I

{
R2(m)

AVS

(
Xj+

)
= R2(m)

AVS

(
Xj−

)} ]) def= 1 − Q(m)
AVS. (4.1)

Equation (4.1) was proposed by Hanley and McNeil (1982), and
it has been widely used to measure the ranking quality of algo-
rithms (Herlocker et al. 2004; Elith* et al. 2006; McKinney et al.
2020). In fact, for each pair in the positive set and negative set, if
the rank of the screening measure is inconsistent with that of the
true features (i.e., R2(m)

AVS (Xj+) ≤ R2(m)
AVS (Xj−)), the rank loss Q(m)

AVS
will increase by one or a half unit as a penalty. Consequently,
when the ranks of the screening measures and true features
are completely consistent, we have AUC = 1; otherwise, AUC
decreases as the ranking consistency decreases. Further define
AUC of the AVS measure as AUCAVS = M−1 ∑M

m=1 AUC(m)
AVS.

Similar measurements are reported for the two other screening
measures. Last, the average sampling time costs are recorded
under the RAS and SAS sampling schemes, respectively, as
TCRAS and TCSAS to evaluate the computational efficiency.

We summarize the Bias, SE and RMSE in Figure 2 and present
the rank consistency results in Table 2. Since the statistical
performance under SAS is comparable to that under RAS in
all settings, we report the results only for SAS in Figure 2. The
detailed results for RAS are given in Appendix F.3. First, for a

fixed sample size N, SE decreases when either n or B increases
(as long as N ≥ nB). Among the three screening measures, AMS
has smaller SE values than the AVS and DAS methods. Next, as
expected, the Bias decreases as the subsample size n increases
but is not related to B. In addition, after the jackknife debiasing
procedure, the bias of the DAS measure is much smaller than
that of the AVS measure. Consequently, the RMSE value of AMS
is the smallest, while that of AVS is the largest. This result is
consistent with our theoretical findings in Lemma 1 and 2.

Subsequently, we evaluate the screening accuracy with
respect to the AUC criterion. The AMS measure outperforms
the other two screening measures across all settings. The
performance of the DAS measure is comparable to that of the
AMS measure, especially for Example 2 (i.e., the qualitative
case). For instance, for N = 105, n = 50, and B = 500, the
AUCs of the AMS and DAS measures are larger than 99.98%
under the both RAS and SAS sampling schemes, while the
AUC of the AVS measure is only 80%. Last, in terms of the
computational efficiency, the procedure is less time consuming
under SAS than under RAS especially when n and B are large.
For instance, with N = 106, n = 100, and B = 500 in Example 1,
the average computational time under SAS is 44.43s, while that
under RAS is 158.80 sec.

4.3. Real Data Analysis With Airline Dataset

In this section, we use a U.S. airline dataset to illustrate the
proposed method. The dataset is available on the official website
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Table 2. Simulation results for Example 1 and 2 under the RAS and SAS sampling schemes. The numerical performance is evaluated for different sample sizes N(×105),
subsample sizes n and numbers of subsamples B. For the AVS, DAS, and AMS measures, the AUC values are reported as the screening accuracy criterion. Finally, the average
time cost of sampling is also reported.

N n B AUCRAS(%) TCRAS AUCSAS(%) TCSAS

AVS DAS AMS AVS DAS AMS

Example 1
1 50 200 96.60 96.61 98.80 45.63 95.66 95.74 98.86 16.68

500 97.26 97.40 98.93 116.38 96.67 96.83 98.99 41.28
100 200 97.57 97.63 98.95 63.70 97.35 97.44 98.91 17.32

500 98.28 98.38 98.90 158.80 97.96 98.04 98.91 44.43
10 50 200 96.65 96.57 99.05 53.92 96.65 96.61 98.88 15.75

500 97.48 97.48 99.05 121.93 97.83 97.88 99.08 39.39
100 200 97.70 97.68 99.25 56.26 97.88 97.85 99.10 17.68

500 98.46 98.43 99.17 139.87 98.65 98.62 99.30 44.20

Example 2
1 50 200 80.05 98.78 100.00 55.77 80.13 98.70 100.00 30.69

500 80.00 99.98 100.00 140.59 80.00 99.98 100.00 77.26
100 200 88.43 100.00 100.00 67.27 88.75 100.00 100.00 33.64

500 87.39 100.00 100.00 167.88 88.56 100.00 100.00 85.53
10 50 200 80.18 98.89 100.00 74.99 80.15 99.13 100.00 30.60

500 80.00 99.98 100.00 172.32 80.00 99.99 100.00 76.98
100 200 89.87 100.00 100.00 79.44 89.70 100.00 100.00 34.29

500 88.83 100.00 100.00 200.82 90.11 100.00 100.00 86.67

Table 3. Estimation results for airline data under the RAS and SAS sampling schemes. The numerical performance is evaluated for different subsample sizes n and numbers
of subsamples B. For the AVS, DAS, and AMS measures, the SE, Bias, RMSE, and AUC are reported. Finally, the average time cost of sampling is also reported.

Sch B SE (×10−3) Bias (×10−2) RMSE (×10−2) AUC(%) TC

R2
AVS R2

DAS R2
AMS R2

AVS R2
DAS R2

AMS R2
AVS R2

DAS R2
AMS R2

AVS R2
DAS R2

AMS

n = 50
RAS 100 11.46 12.62 10.53 4.261 0.446 0.513 4.456 1.489 1.176 87.86 89.08 89.39 8.54

200 7.751 8.604 7.009 4.141 0.344 0.361 4.235 1.092 0.792 87.95 89.26 89.79 17.70
500 5.029 5.573 4.567 4.156 0.331 0.370 4.196 0.809 0.591 88.13 89.42 90.89 43.40

SAS 100 11.47 12.71 10.43 4.193 0.363 0.453 4.392 1.484 1.141 87.86 89.04 89.31 1.17
200 7.973 8.831 7.331 4.148 0.341 0.357 4.249 1.118 0.818 88.07 89.42 89.96 2.39
500 5.179 5.726 4.613 4.191 0.345 0.407 4.233 0.824 0.618 88.16 89.44 90.91 6.02

n = 100
RAS 100 7.485 7.890 6.864 2.172 0.173 0.199 2.347 0.871 0.719 88.88 89.13 89.95 9.36

200 5.534 5.824 5.107 2.165 0.145 0.177 2.265 0.670 0.542 89.19 89.41 90.65 18.49
500 3.293 3.478 2.989 2.200 0.146 0.212 2.235 0.445 0.368 89.47 89.75 91.68 46.44

SAS 100 7.670 8.100 7.100 2.168 0.166 0.200 2.352 0.891 0.741 89.00 89.31 89.88 1.29
200 5.363 5.658 4.959 2.170 0.148 0.186 2.263 0.652 0.532 89.24 89.43 90.59 2.68
500 3.576 3.769 3.292 2.191 0.139 0.207 2.233 0.472 0.390 89.41 89.62 91.71 6.54

of the American Statistical Association at http://stat-computing.
org/dataexpo/2009. The airline dataset contains information
about commercial flights in the United States from 1987 to
2008. After basic data cleaning, we keep the flight information
from 2004 to 2008 with 12 variables. The variables are: ArrTime
(actual arrive time), Year, Month, DayofMonth, DayofWeek,
CRSElapsedTime (scheduled elapsed time), CRSArrTime,
Actual ElapsedTime, Distance, UniqueCarrier, Dest and Origin.

For the analysis, we use the ArrTime as the response and gen-
erate corresponding covariates from the other variables. First we
split the cities in Origin according to the states. Next, we keep
the top 10 states and group cities in the other states together
as one state. Then, for each state, we keep the top 2 cities and
group the others as one city. Via this procedure, we gener-
ate 10 categorical variables from the variable Origin. Similar
procedures are applied to the variable Dest. Finally, we gener-
ate the 1-40th lags of the response ArriveTime and predictor
ActualElapsedTime to detect lag effects. As a result, we derive
109 predictors of N = 3.27 × 107 records and the size of the
dataset is 27.6 GB. Detailed variable information is provided in
Appendix F.4; see Table F.3 (supplementary material), and all

the numerical variables are standarized to a mean of 0 and a
variance of 1.

To evaluate the screening accuracy, we treat the R-squared
screening measure using the whole dataset as the gold standard.
The comparison is performed with the three screening measures
(AVS, DAS, and AMS) using the same procedure as in the sim-
ulation study. Since in the real data analysis we do not know the
ground truth (i.e., Mβ

T and Mγ
T), we revise the AUC measure

as follows (for the AVS measures, for example),

AUCAVS = 1 −
( 1

p2 − p

p∑
j1 �=j2
j1=1

p∑
j2=1

I
{

R2
AVS(Xj1) < R2

AVS(Xj2)
}

× I
{

R2(Xj1) > R2(Xj2)
})

,

where R2(Xj) is the R-squared measure for the jth feature
using the whole dataset. The detailed results are summarized
in Table 3.

The performance under RAS and SAS is comparable in all
settings, while the time cost of SAS is approximately 1/8 that of

http://stat-computing.org/dataexpo/2009
http://stat-computing.org/dataexpo/2009
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the RAS. Second, the SE decreases when either n or B increases,
while the Bias decreases only when n increasing. Comparing the
three measures, AMS has the smallest SE and Bias. In addition,
the Biases of DAS and AMS measures are substantially smaller
than that of the AVS measure. In terms of the screening accu-
racy, both the AMS and DAS measures have higher AUC values
than the AVS measure, with AMS having the largest AUC. For
instance, in the case of B = 500, n = 50 (under SAS), the AUC
of the AMS measure is 90.91%, which is larger than that of the
DAS (89.44%) and AVS (88.16%) methods.

5. Discussion

In this article, we develop a subsampling method for feature
screening with massive datasets. Three R-squared-based screen-
ing measures are investigated. According to both theoretical and
empirical studies, the DAS and AMS measures show advantages
in terms of reducing biases. To reduce the sampling cost, we
further consider a novel sequential sampling method in place
of the simple random sampling. The theoretical properties are
rigorously established. In practice, the accuracy of the feature
screening methods is comparable, and the sequential sampling
approach is more computationally efficient.

To conclude the article, we provide several topics for future
study. First, other famous feature screening methods such as the
forward screening measure (Wang 2009), RRCS (Li et al. 2012a),
and DC-SIS (Li, Zhong, and Zhu 2012b) can be incorporated
into our subsampling approach. Second, variable selection is
another important topic in the regime of high-dimensional
modeling, subsampling methods for variable selection should
be designed and investigated. Last, the proposed subsampling
approach cannot be applied for dependent data (e.g., time series
and spatial data). As a consequence, a subsampling method
that preserves the dependence structure of the data with low
computational cost should be developed.

Supplementary Materials

Supplementary_Material.pdf: This document provides the extensions of
the proposed method, the proofs of the theoretical results in the main
text, and some additional simulation results. Appendix A reports some
extensions and discussions of the proposed method. Appendix B contains
the detailed proofs of the theoretical results of the AVS measure. Appendix
C contains the detailed proofs of the main theorems and Lemmas developed
in section 3.1-3.3 of the main text. In particular, it contains the proofs of
theorems 1, 2, 3, 4, and 5 and Lemmas 1 and 2 of the main text. Appendix D
contains the detailed proofs of screening consistency developed in sections
3.4 of the main text. In particular, it contains the proofs of theorems 5 and
6 and Lemma 3 of the main text. Appendix E provides technical lemmas
which are useful to prove the results in section 3 of the main text. Finally,
Appendix F contains some additional numerical results.

Code.zip: This file is the python code for the proposed method. Please
see the “README.md”ž in the file for using the code.
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